Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Feb;39(2):115-122.
doi: 10.1016/j.cjca.2022.09.020. Epub 2022 Sep 27.

Fetal Brain Development in Congenital Heart Disease

Affiliations
Review

Fetal Brain Development in Congenital Heart Disease

Shabnam Peyvandi et al. Can J Cardiol. 2023 Feb.

Abstract

Neurodevelopmental impairments are the most common extracardiac morbidities among patients with complex congenital heart disease (CHD) across the lifespan. Robust clinical research in this area has revealed several cardiac, medical, and social factors that can contribute to neurodevelopmental outcome in the context of CHD. Studies using brain magnetic resonance imaging (MRI) have been instrumental in identifying quantitative and qualitative difference in brain structure and maturation in this patient population. Full-term newborns with complex CHD are known to have abnormal microstructural and metabolic brain development with patterns similar to those seen in premature infants at approximately 34 to 36 weeks' gestation. With the advent of fetal brain MRI, these brain abnormalities are now documented as they begin in utero, as early as the third trimester. Importantly, disturbed brain development in utero is now known to be independently associated with neurodevelopmental outcome in early childhood, making the prenatal period an important timeframe for potential interventions. Advances in fetal brain MRI provide a robust imaging tool to use in future neuroprotective clinical trials. The causes of abnormal fetal brain development are multifactorial and include cardiovascular physiology, genetic abnormalities, placental impairment, and other environmental and social factors. This review provides an overview of current knowledge of brain development in the context of CHD, common prenatal imaging tools to evaluate the developing fetal brain in CHD, and known risk factors contributing to brain immaturity.

Les troubles neurodéveloppementaux sont parmi les états morbides extracardiaques les plus fréquents dans la vie des patients atteints d’une cardiopathie congénitale (CC) complexe. Des recherches cliniques rigoureuses ont mis en umière différents facteurs cardiaques, médicaux et sociaux qui contribuent aux troubles neurodéveloppementaux en contexte de CC. Des études faisant appel à l’imagerie par résonance magnétique (IRM) du cerveau ont été déterminantes pour caractériser les différences quantitatives et qualitatives dans les structures cérébrales et la maturation du cerveau dans cette population de patients. Les nourrissons nés à terme atteints de CC complexe présentent des anomalies du développement microstructurel et métabolique du cerveau comparables à celles observes chez les bébés prématurés nés à 34 à 36 semaines de gestation. L’arrivée de l’IRM cérébrale foetale permet maintenant de documenter ces anomalies lors de leur apparition in utero, dès le troisième trimestre de grossesse. Il est important de souligner qu’un retard de développement cérébral in utero est un facteur indépendant associé à des troubles neurodéveloppementaux dans la petite enfance. La période prénatale pourrait être une période importante pour de possibles interventions. Les progrès réalisés dans le domaine de l’IRM cérébrale fœtale en font un puissant outil d’imagerie à utiliser lors d’essais cliniques futurs sur la neuroprotection. Les causes des anomalies du développement cérébral fœtal sont multifactorielles et incluent la physiologie cardiovasculaire, les anomalies génétiques, les dysfonctions placentaires et d’autres facteurs environnementaux et sociaux. Notre article fournit un aperçu de l’état actuel des connaissances sur le développement cérébral en contexte de CC, des outils d’imagerie prénatale fréquemment utilisés pour évaluer le développement cérébral fœtal dans les cas de CC et des facteurs de risque connus qui contribuent à l’immaturité cérébrale.

PubMed Disclaimer

Conflict of interest statement

Disclosures

The authors have no conflicts of interest to disclose.

Figures

Figure 1.
Figure 1.
Brain volume differences in fetuses with congenital heart disease compared with healthy fetuses (“optimal”) and CHD-related control fetuses (eg, healthy siblings of patients with known CHD). Estimated group differences in regional brain volumes for fetuses with HLHS or TGA compared with each control group are depicted in (left) axial, (middle) coronal, and (right) sagittal planes in a 32-week gestational age fetal brain. Blue indicates a relative reduction in brain volume of the structure compared with the reference group; red indicates a relative increase. Intensity reflects the magnitude of the estimated group difference in regional brain volume relative to the reference group for a 32-week gestational age male, according to the scale provided. Asterisks denote significance according to false discovery rate—adjusted P values comparing group-difference β-estimates (Table 3): *P < 0.05; **P < 0.01; ***P < 0.001. CHD, congenital heart disease; HLHS, hypoplastic left heart syndrome; TGA, dextro-transposition of the great arteries. Modified from Rollins et al. with permission from John Wiley and Sons.
Figure 2.
Figure 2.
T2* values at baseline for control, LSOL, and TGA groups with mean and 95% confidence intervals (CIs; error bars). At baseline, cerebral tissue oxygenation (T2*) is significantly lower in the LSOL (**coeff: −15.4, 95% CI −25.3 to −5.5; P = 0.003) and TGA (*coeff: −12.0, 95% CI −24.4 to 0.4; P = 0.05) groups compared with the control group after adjusting for gestational age at MRI. LSOL, left-side obstructive lesion; MRI, magnetic resonance imaging; TGA, dextro-transposition of the great arteries. Modified from Peyvandi et al. with permission of John Wiley and Sons.
Figure 3.
Figure 3.
Contributors to delayed brain development in utero. The etiology of prenatal delayed brain development in congenital heart disease is thought to be multifactorial with contributions from cardiovascular physiology, genetic differences, and an adverse maternal-fetal environment. d-TGA, dextro-transposition of the great arteries; HLHS, hypoplastic left heart syndrome.

Similar articles

Cited by

References

    1. Hoffman JIE, Kaplan S. The incidence of congenital heart disease. JAC 2002;39:1890–900. - PubMed
    1. Gaies M, Pasquali SK, Banerjee M, et al. Improvement in pediatric cardiac surgical outcomes through interhospital collaboration. J Am Coll Cardiol 2019;74:2786–95. - PMC - PubMed
    1. Jacobs JP, He X, Mayer JE, et al. Mortality trends in pediatric and congenital heart surgery: an analysis of the Society of Thoracic Surgeons congenital heart surgery database. Ann Thorac Surg 2016;102:1345–52. - PubMed
    1. Gilboa SM, Devine OJ, Kucik JE, et al. Congenital heart defects in the united states: estimating the magnitude of the affected population in 2010. Circulation 2016;134:101–9. - PMC - PubMed
    1. Schaefer C, Rhein M von, Knirsch W, et al. Neurodevelopmental outcome, psychological adjustment, and quality of life in adolescents with congenital heart disease. Dev Med Child Neurol 2013;55:1143–9. - PubMed

Publication types