Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 13:13:1004262.
doi: 10.3389/fmicb.2022.1004262. eCollection 2022.

The exploration of anti- Vibrio parahaemolyticus substances from Phellodendri Chinensis Cortex as a preservative for shrimp storage

Affiliations

The exploration of anti- Vibrio parahaemolyticus substances from Phellodendri Chinensis Cortex as a preservative for shrimp storage

Huifang Zheng et al. Front Microbiol. .

Abstract

This study aimed to optimize the ultrasonic-assisted extraction of the anti-Vibrio parahaemolyticus substances of Phellodendri Chinensis Cortex (ASPC), identify their active substances, and investigate their application in shrimp storage. The ultrasonic-assisted extraction conditions of ASPC were optimized through a single-factor experiment combined with response surface methodology. The optimal parameters were the ethanol concentration of 81%, the ultrasonic power of 500 W, the temperature of 80°C, the extraction time of 23 min, and the liquid/solid ratio 25 ml/g. The antibacterial zone diameter of the obtained extract determined by agar well diffusion method was 15.56 ± 0.22 mm, which was not significantly different from the predicted value (15.92 mm). Berberine was identified as one of the main chemical components of ASPC through high-performance liquid chromatography combined with standard control. The minimum inhibitory concentrations of ASPC and berberine determined by the tube dilution method were 0.25 and 0.03 mg/ml, respectively. The application of ASPC in shrimp storage showed that it could effectively inhibit the proliferation of V. parahaemolyticus on shrimps. This report offers good prospects for the use of Phellodendri Chinensis Cortex as a potential preservative against V. parahaemolyticus in aquatic products.

Keywords: Phellodendri Chinensis Cortex; Vibrio parahaemolyticus; antibacterial activity; response surface methodology; ultrasonic-assisted extraction.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Effects of different single factors on the diameter of the inhibition zone of the extract. (A) Ethanol concentration; (B) Ultrasonic power; (C) Extraction temperature; (D) Extraction time; and (E) Liquid–solid ratio. Compared with the previous column, an asterisk (*) represents p < 0.05 and the double asterisk (**) represents p < 0.01.
Figure 2
Figure 2
Response surface plots showing effects of pairwise factors on the antibacterial activity of the extract and their interaction. (A) Ethanol concentration and time (liquid/solid ratio was constant at 20: 1); (B) Ethanol concentration and liquid/solid ratio (the extraction time was constant at 20 min); and (C) time and liquid/solid ratio (ethanol concentration was constant at 80%).
Figure 3
Figure 3
HPLC fingerprint chromatograms of ASPC (A) and berberine (B).
Figure 4
Figure 4
Colony numbers of raw shrimp treated with ASPC, 7% ethanol, and sterile water after 1, 3, 5, and 7 days at 4°C and room temperature. Compared with the ASPC group, the letter “a” represents p < 0.05. Compared with the 4°C group, the letter “b” represents p < 0.05.

References

    1. Cao J., Liu H., Wang Y., He X., Jiang H., Yao J., et al. . (2021). Antimicrobial and antivirulence efficacies of citral against foodborne pathogen Vibrio parahaemolyticus RIMD2210633. Food Control 120:107507. doi: 10.1016/j.foodcont.2020.107507 - DOI
    1. Chen M. L., Xian Y. F., Ip S. P., Tsai S. H., Yang J. Y., Che C. T. (2010). Chemical and biological differentiation of cortex Phellodendri Chinensis and cortex Phellodendri Amurensis. Planta Med. 76, 1530–1535. doi: 10.1055/s-0030-1249774 - DOI - PubMed
    1. Chmelová D., Škulcová D., Legerská B., Horník M., Ondrejovič M. (2020). Ultrasonic-assisted extraction of polyphenols and antioxidants from Picea abies bark. J. Biotechnol. 314-315, 25–33. doi: 10.1016/j.jbiotec.2020.04.003 - DOI - PubMed
    1. Fang S., Guo S., Du S., Cao Z., Yang Y., Su X., et al. . (2022). Efficacy and safety of berberine in preventing recurrence of colorectal adenomas: a systematic review and meta-analysis. J. Ethnopharmacol. 282:114617. doi: 10.1016/j.jep.2021.114617, PMID: - DOI - PubMed
    1. Ge H., Ni Q., Chen Z., Li J., Zhao F. (2019). Effects of short period feeding polysaccharides from marine macroalga, Ulva prolifera on growth and resistance of Litopenaeus vannamei against Vibrio parahaemolyticus infection. J. Appl. Phycol. 31, 2085–2092. doi: 10.1007/s10811-018-1663-3 - DOI

LinkOut - more resources