Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct 19;18(40):7773-7781.
doi: 10.1039/d2sm00854h.

N-Alkylimidazolium carboxylates as a new type of catanionic surface active ionic liquid: synthesis, thermotropic behavior and micellization in water

Affiliations

N-Alkylimidazolium carboxylates as a new type of catanionic surface active ionic liquid: synthesis, thermotropic behavior and micellization in water

Sebastian B Wachsmann et al. Soft Matter. .

Abstract

Aiming at a new type of salt-free CASAIL (Catanionic Surface Active IL) for electrochemical applications or emulsifiers, dispersants, and foaming or antifoaming agents, we combined mesogenic anions (carboxylate) and cations (imidazolium) of similar shape and size to synthesize a series of congruent ion pairs of 1-alkyl-3-methylimidazolium alkylcarboxylates [Cnmim][Cm-1COO] (n = 10-16, m = 10-16). With particular focus on alkyl chain length varieties in both, imidazolium cations and carboxylate anions (n/m), the self-assembly in the bulk phase and in solution was investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), X-ray diffraction (XRD) experiments and surface tension measurements. Our results revealed that the presence of long alkyl chains on both the cation n and anion m leads to improved thermal stability of the bulk material while maintaining broad lamellar (SmA) mesophases. In water, we observed a strong and linear decrease of log(cmc) for increasing both the carboxylate anion and imidazolium cation chain length due to the increasing hydrophobic effect. Surprisingly, for both thermotropic behavior and micellization, the chain length of the carboxylate anion had a stronger impact than the chain length of the imidazolium cation, indicating its greater surface activity and tendency to form micelles.

PubMed Disclaimer

LinkOut - more resources