Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 16;129(12):120601.
doi: 10.1103/PhysRevLett.129.120601.

Localization and Melting of Interfaces in the Two-Dimensional Quantum Ising Model

Affiliations

Localization and Melting of Interfaces in the Two-Dimensional Quantum Ising Model

Federico Balducci et al. Phys Rev Lett. .

Abstract

We study the nonequilibrium evolution of coexisting ferromagnetic domains in the two-dimensional quantum Ising model-a setup relevant in several contexts, from quantum nucleation dynamics and false-vacuum decay scenarios to recent experiments with Rydberg-atom arrays. We demonstrate that the quantum-fluctuating interface delimiting a large bubble can be studied as an effective one-dimensional system through a "holographic" mapping. For the considered model, the emergent interface excitations map to an integrable chain of fermionic particles. We discuss how this integrability is broken by geometric features of the bubbles and by corrections in inverse powers of the ferromagnetic coupling, and provide a lower bound to the timescale after which the bubble is ultimately expected to melt. Remarkably, we demonstrate that a symmetry-breaking longitudinal field gives rise to a robust ergodicity breaking in two dimensions, a phenomenon underpinned by Stark many-body localization of the emergent fermionic excitations of the interface.

PubMed Disclaimer

LinkOut - more resources