Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb:124:360-370.
doi: 10.1016/j.jes.2021.09.037. Epub 2022 Feb 3.

Efficient removal of Cr(VI) by a 3D Z-scheme TiO2-ZnxCd1-xS graphene aerogel via synergy of adsorption and photocatalysis under visible light

Affiliations

Efficient removal of Cr(VI) by a 3D Z-scheme TiO2-ZnxCd1-xS graphene aerogel via synergy of adsorption and photocatalysis under visible light

Qianwei Liang et al. J Environ Sci (China). 2023 Feb.

Abstract

Efficient and robust photocatalysts for environmental pollutants removal with outstanding stability have great significance. Herein, we report a kind of three dimensional (3D) photocatalyst presented as Z-scheme heterojunction, which combining TiO2 and ZnxCd1-xS with graphene aerogel to contrast TiO2-ZnxCd1-xS graphene aerogel (TSGA, x=0.5) through a moderate hydrothermal process. The as-prepared Z-scheme TSGA was used to remove aqueous Cr(VI) via a synergistic effect of adsorption and visible light photocatalysis. The adsorption equilibrium can be reached about 40 min, then after about 30 min irradiation under visible light (wavelength (λ) > 420 nm) the removal rate of Cr(VI) almost reached 100%, which is much better than the performance of pristine TiO2 and Zn0.5Cd0.5S, as well as TiO2 graphene aerogel (TGA) and Zn0.5Cd0.5S graphene aerogel (SGA). The virulent Cr(VI) was reduced to Cr(III) with hypotoxicity after photocatalysis on TSGA, meanwhile the as-synthesized TSGA presented a good stability and reusability. The reduced graphene oxide (rGO) sheets between TiO2 and Zn0.5Cd0.5S played a role as charge transfer mediator, promoting the photoinduced electrons transfer and photocatalysis ability of TSGA was enhanced significantly. Hence, such photocatalyst exhibits a potential application on removing heavy metals with high efficiency and stability from polluted aqueous environment.

Keywords: Adsorption; Cr(VI); Graphene aerogel; Photocatalysis; Photocatalyst.

PubMed Disclaimer

LinkOut - more resources