Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep;32(9):093119.
doi: 10.1063/5.0090443.

A global synchronization theorem for oscillators on a random graph

Affiliations

A global synchronization theorem for oscillators on a random graph

Martin Kassabov et al. Chaos. 2022 Sep.

Abstract

Consider n identical Kuramoto oscillators on a random graph. Specifically, consider Erdős-Rényi random graphs in which any two oscillators are bidirectionally coupled with unit strength, independently and at random, with probability 0 ≤ p ≤ 1. We say that a network is globally synchronizing if the oscillators converge to the all-in-phase synchronous state for almost all initial conditions. Is there a critical threshold for p above which global synchrony is extremely likely but below which it is extremely rare? It is suspected that a critical threshold exists and is close to the so-called connectivity threshold, namely, p ∼ log ⁡ ( n ) / n for n ≫ 1. Ling, Xu, and Bandeira made the first progress toward proving a result in this direction: they showed that if p ≫ log ⁡ ( n ) / n, then Erdős-Rényi networks of Kuramoto oscillators are globally synchronizing with high probability as n → ∞. Here, we improve that result by showing that p ≫ log ⁡ ( n ) / n suffices. Our estimates are explicit: for example, we can say that there is more than a 99.9996 % chance that a random network with n = 10 and p > 0.011 17 is globally synchronizing.

PubMed Disclaimer

LinkOut - more resources