Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct 2;22(1):1225.
doi: 10.1186/s12913-022-08592-0.

A healthcare workers' mHealth adoption instrument for the developing world

Affiliations

A healthcare workers' mHealth adoption instrument for the developing world

Michael Addotey-Delove et al. BMC Health Serv Res. .

Abstract

Introduction: Healthcare workers' adoption of mHealth is critical to the success or failure of clinician based mHealth services in the developing world. mHealth adoption is affected or promoted by certain factors, some of which are peculiar to the developing world. Identifying these factors and evaluating them will help develop a valid and reliable measuring instrument for more successful prediction of mHealth adoption in the future. The aim of this study was to design and develop such an instrument.

Method: A Healthcare workers' mHealth Adoption Questionnaire (HmAQ) was developed based on five constructs identified through a prior literature review: multi-sectorial engagement and ownership; staffing and technical support; reliable infrastructure; usefulness and stewardship; and intention to adopt. After testing face and content validity, the questionnaire was administered to 104 nurses and midwives in the Ewutu-Senya district of the Central Region of Ghana who used a maternal mHealth intervention. After data collection confirmatory factor analysis and structural equation modelling were applied and the Healthcare Worker mHealth Adoption Impact Model (HmAIM) developed.

Results: Exploratory factor analysis showed the eigenvalue of all five components to be significant (cumulative total greater than 1.0). Bartlett's Test of Sphericity was significant, the Kaiser-Meyer-Olkin value was 0.777, and the mean Cronbach's α value was 0.82 (range 0.81-0.83). Confirmatory factor analysis showed that constructs for the HmAQ were within acceptable limits and valid. Structural equation modelling showed the causal relationships between components. This resulted in development of the HmAIM. A modified model was then developed using the averages of individual construct items. This model showed strong correlation among the constructs. Further research will be required to understand new dimensions of mHealth adoption as a result of emerging technology needs, new complexities in the healthcare work environment, and how different cadres of healthcare workers respond to it.

Conclusion: The study presents a valid and reliable instrument, the HmAIM, to serve as a tool for assessment of healthcare workers' mHealth adoption in the developing world. Use of the instrument will enhance the likelihood of successful adoption of mHealth implementations.

Keywords: Adoption; Assessment scale; Developing world; Healthcare worker; Telemedicine; eHealth; mHealth.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Scree plot showing distribution of factors by their eigenvalues for healthcare workers’ components
Fig. 2
Fig. 2
Healthcare Workers’ Structural Equation Model. (Legend: MFO - Multi-sectorial engagement. HTS - Adequate human resources, training and technical support. RI - Available and reliable infrastructure. USC - Usefulness, security and socio-cultural concerns. IA - Intention to Adopt. “e’s” - (i.e., e1, e2, e3, etc.) are the error terms of the variables
Fig. 3
Fig. 3
Modified Unified Healthcare Workers’ Model. AVGM - Multi-sectorial engagement, funding and ownership; AVGHTS - Adequate human resource, training and technical support; AVGRI - Available and reliable infrastructure; AVGUS - Usefulness, security and socio- cultural concerns; AVGIA - Intention to Adopt
Fig. 4
Fig. 4
Healthcare Worker mHealth Adoption Impact Model (HmAIM)

References

    1. World Health Organization . mHealth: new horizons for health through mobile technologies. Geneva: World Health Organization; 2011.
    1. Odendaal WA, Anstey Watkins J, Leon N, Goudge J, Griffiths F, Tomlinson M, et al. Health workers’ perceptions and experiences of using mHealth technologies to deliver primary healthcare services: a qualitative evidence synthesis. Cochrane Database Syst Rev. 2020;3(3):CD011942. - PMC - PubMed
    1. Allida S, Du H, Xu X, Prichard R, Chang S, Hickman LD, et al. mHealth education interventions in heart failure. Cochrane Database Syst Rev. 2020;7. https://www.cochranelibrary.com/cdsr/aboutcdsr. - PMC - PubMed
    1. Hurt K, Walker RJ, Campbell JA, Egede LE. mHealth interventions in low and middle-income countries: a systematic review. Glob J Health Sci. 2016;8(9):183–193. doi: 10.5539/gjhs.v8n9p183. - DOI - PMC - PubMed
    1. Anderson-Lewis C, Darville G, Mercado RE, Howell S, Maggio S. mHealth technology use and implications in historically underserved and minority populations in the United States: systematic literature review. JMIR mHealth uHealth. 2018;6(6):e128. doi: 10.2196/mhealth.8383. - DOI - PMC - PubMed