Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct 1;18(1):363.
doi: 10.1186/s12917-022-03455-6.

Sex-differential non-specific effects of adjuvanted and non-adjuvanted rabies vaccines versus placebo on all-cause mortality in dogs (NERVE-Dog study): a study protocol for a randomized controlled trial with a nested case-control study

Affiliations

Sex-differential non-specific effects of adjuvanted and non-adjuvanted rabies vaccines versus placebo on all-cause mortality in dogs (NERVE-Dog study): a study protocol for a randomized controlled trial with a nested case-control study

Darryn L Knobel et al. BMC Vet Res. .

Abstract

Background: It has been proposed that childhood vaccines in high-mortality populations may have substantial impacts on mortality rates that are not explained by the prevention of targeted diseases, nor conversely by typical expected adverse reactions to the vaccines, and that these non-specific effects (NSEs) are generally more pronounced in females. The existence of these effects, and any implications for the development of vaccines and the design of vaccination programs to enhance safety, remain controversial. One area of controversy is the reported association of non-live vaccines with increased female mortality. In a previous randomized controlled trial (RCT), we observed that non-live alum-adjuvanted animal rabies vaccine (ARV) was associated with increased female but not male mortality in young, free-roaming dogs. Conversely, non-live non-adjuvanted human rabies vaccine (NRV) has been associated with beneficial non-specific effects in children. Alum adjuvant has been shown to suppress Th1 responses to pathogens, leading us to hypothesize that alum-adjuvanted rabies vaccine in young dogs has a detrimental effect on female survival by modulating the immune response to infectious and/or parasitic diseases. In this paper, we present the protocol of a 3-arm RCT comparing the effect of alum-adjuvanted rabies vaccine, non-adjuvanted rabies vaccine and placebo on all-cause mortality in an owned, free-roaming dog population, with causal mediation analysis of the RCT and a nested case-control study to test this hypothesis.

Methods: Randomised controlled trial with a nested case-control study.

Discussion: We expect that, among the placebo group, males will have higher mortality caused by higher pathogen loads and more severe disease, as determined by haematological parameters and inflammatory biomarkers. Among females, we expect that there will be no difference in mortality between the NRV and placebo groups, but that the ARV group will have higher mortality, again mediated by higher pathogen loads and more severe disease. We anticipate that these changes are preceded by shifts in key serum cytokine concentrations towards an anti-inflammatory immune response in females. If confirmed, these results will provide a rational basis for mitigation of detrimental NSEs of non-live vaccines in high-mortality populations.

Keywords: Cytokines; Dogs; Haemoparasites; Helminths; Mortality; Non-specific effects; Rabies; Sex; Vaccine; Viruses.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
A map of Kenya showing the location of the study site. The image is our own
Fig. 2
Fig. 2
Flow diagram of study subjects. The numbers for ‘n = ’ will be determined in the study. *Given out or sold outside of the study site (33 villages), or new owner does not provide consent

Similar articles

References

    1. Aaby P, Kollmann TR, Benn CS. Nonspecific effects of neonatal and infant vaccination: public-health, immunological and conceptual challenges. Nat Immunol. 2014;15(10):895–899. doi: 10.1038/ni.2961. - DOI - PubMed
    1. Benn CS, Netea MG, Selin LK, Aaby P. A small jab – a big effect: nonspecific immunomodulation by vaccines. Trends Immunol. 2013;34(9):431–439. doi: 10.1016/j.it.2013.04.004. - DOI - PubMed
    1. Flanagan KL, van Crevel R, Curtis N, Shann F, Levy O. Heterologous ("nonspecific") and sex-differential effects of vaccines: epidemiology, clinical trials, and emerging immunologic mechanisms. Clin Infect Dis. 2013;57(2):283–289. doi: 10.1093/cid/cit209. - DOI - PMC - PubMed
    1. Benn CS, Fisker AB, Rieckmann A, Sørup S, Aaby P. Vaccinology: time to change the paradigm? Lancet Infect Dis. 2020;20(10):e274–e283. doi: 10.1016/S1473-3099(19)30742-X. - DOI - PubMed
    1. Higgins JPT, Soares-Weiser K, López-López JA, Kakourou A, Chaplin K, Christensen H, et al. Association of BCG, DTP, and measles containing vaccines with childhood mortality: systematic review. BMJ. 2016;355:i5170. doi: 10.1136/bmj.i5170. - DOI - PMC - PubMed

Publication types