Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov:226:107153.
doi: 10.1016/j.cmpb.2022.107153. Epub 2022 Sep 22.

A physical activity-intensity driven glycemic model for type 1 diabetes

Affiliations

A physical activity-intensity driven glycemic model for type 1 diabetes

Nicole Hobbs et al. Comput Methods Programs Biomed. 2022 Nov.

Abstract

Background and objective: The glucose response to physical activity for a person with type 1 diabetes (T1D) depends upon the intensity and duration of the physical activity, plasma insulin concentrations, and the individual physical fitness level. To accurately model the glycemic response to physical activity, these factors must be considered.

Methods: Several physiological models describing the glycemic response to physical activity are proposed by incorporating model terms proportional to the physical activity intensity and duration describing endogenous glucose production (EGP), glucose utilization, and glucose transfer from the plasma to tissues. Leveraging clinical data of T1D during physical activity, each model fit is assessed.

Results: The proposed model with terms accommodating EGP, glucose transfer, and insulin-independent glucose utilization allow for an improved simulation of physical activity glycemic responses with the greatest reduction in model error (mean absolute percentage error: 16.11 ± 4.82 vs. 19.49 ± 5.87, p = 0.002).

Conclusions: The development of a physiologically plausible model with model terms representing each major contributor to glucose metabolism during physical activity can outperform traditional models with physical activity described through glucose utilization alone. This model accurately describes the relation of plasma insulin and physical activity intensity on glucose production and glucose utilization to generate the appropriately increasing, decreasing or stable glucose response for each physical activity condition. The proposed model will enable the in silico evaluation of automated insulin dosing algorithms designed to mitigate the effects of physical activity with the appropriate relationship between the reduction in basal insulin and the corresponding glycemic excursion.

Keywords: Physical activity; Physiological modeling; Type 1 diabetes.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors do not have any conflict of interests.

LinkOut - more resources