Photoinduced CO2 and N2 reductions on plasmonically enabled gallium oxide
- PMID: 36183645
- DOI: 10.1016/j.jcis.2022.09.097
Photoinduced CO2 and N2 reductions on plasmonically enabled gallium oxide
Abstract
Ag-containing ZnO/ β-Ga2O3 semiconductor, which exhibit reduced bandgap, increased light absorption, and hydrophilicity, have been found to be useful for photocatalytic CO2 reduction and N2 fixation by water. The charge-separation is facilitated by the new interfaces and inherent vacancies. The Ag@GaZn demonstrated the highest photocurrent response, about 20- and 2.27-folds that of the Ga and GaZn samples, respectively. CO, CH4, and H2 formed as products for photo-reduction of CO2. Ag@GaZn catalyst exhibited the highest AQY of 0.121 % at 400 nm (31.2 W/m2). Also, Ag@GaZn generated 740 μmolg-1 of NH4+ ions, which was about 18-folds higher than Ga sample. In situ DRIFTS for isotopic-labelled 13CO2 and 15N2 reaffirmed the photo-activity of as-synthesized catalysts. Density functional theory provided insight into the relative affinity of different planes of heterostructures towards H2O, CO2 and N2 molecules. The structure-photoactivity rationale behind the intriguing Ag@GaZn sample offers a fundamental insight into the role of plasmonic Ag and design principle of heterostructure with improved photoactivity and stability.
Keywords: CO(2) reduction; DRIFTS, density functional theory; Hydrophilicity; Photocurrent response.
Copyright © 2022 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
LinkOut - more resources
Full Text Sources
