Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 1;216(Pt 1):114451.
doi: 10.1016/j.envres.2022.114451. Epub 2022 Sep 29.

The in-depth revelation of the mechanism by which a downflow Leersia hexandra Swartz constructed wetland-microbial fuel cell synchronously removes Cr(VI) and p-chlorophenol and generates electricity

Affiliations

The in-depth revelation of the mechanism by which a downflow Leersia hexandra Swartz constructed wetland-microbial fuel cell synchronously removes Cr(VI) and p-chlorophenol and generates electricity

Yian Wang et al. Environ Res. .

Abstract

The composite pollution by Cr(VI) and p-chlorophenol (4-CP) has high toxicity and harms water safety. However, research on the effective removal of Cr(VI) and 4-CP composite-polluted wastewater (C&P) and efficient synchronous electricity generation with reclaimed resources is limited. In this study, a downflow Leersia hexandra constructed wetland-microbial fuel cell (DLCW-MFC) was builded to treat C&P, as well as wastewater singularly polluted by Cr(VI) (SC) and 4-CP (SP), respectively, to reveal the mechanism by which DLCW-MFC treats C&P and synchronously generates electricity. The results demonstrate that the cathode layer had a stronger removal effect on pollutants than the middle layer and anode zone layer. Moreover, SC and SP had stronger pollutant removal effects than C&P. Cr(VI) had more competitive with electrons than 4-CP, and they had a synergistic effect on efficient electricity generation. The L.hexandra in SC and SP had a better growth state and lower Cr enrichment concentration than that in C&P. Cr existed in the DLCW-MFC mainly in the form of Cr(III). Gas chromatography-mass spectrometry was used to investigate the degradation pathway of 4-CP in C&P, and indicated that Phenol, 2,4-bis(1,1-dimethylethyl)- and benzoic acid compounds were the main intermediates formed at the cathode, and further mineralized to form medium-long-chain organic compounds to form CO2. The microbial community distribution results revealed that Simplicispira, Cloacibacterium, and Rhizobium are associated with Cr(VI) removal and 4-CP degradation, and were found to be rich in the cathode of C&P. The anode of C&P was found to have more Acinetobacter (1.34%) and Spirochaeta (4.83%) than SC and SP, and the total relative abundance of electricigens at the anode of C&P (7.46%) was higher than that at the anodes of SC and SP. This study can provide a theoretical foundation for the DLCW-MFC to treat heavy metal and chlorophenol composite-polluted wastewater and synchronously generate electricity.

Keywords: Cr(Ⅵ); DLCW-MFC; Mechanism; Microbial community; P-chlorophenol.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources