Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Aug;253(2 Pt 2):F277-81.
doi: 10.1152/ajprenal.1987.253.2.F277.

Bicarbonate and ammonia transport in isolated perfused rat proximal straight tubules

Bicarbonate and ammonia transport in isolated perfused rat proximal straight tubules

J L Garvin et al. Am J Physiol. 1987 Aug.

Abstract

Bicarbonate, ammonia, and fluid transport were studied in isolated perfused proximal straight tubules from rats. The mean rate of fluid absorption (0.77 nl X min-1 X mm-1) and the mean rate of total CO2 absorption (42 pmol X min-1 X mm-1) exceeded corresponding rates measured previously in rabbit proximal straight tubules. The limiting total CO2 concentration when the tubules were perfused at slow flow rates was 5 mM, a value similar to those reported previously for rat proximal convoluted tubules and thick ascending limbs. When rat proximal straight tubules were perfused and bathed with solutions containing 1 mM total ammonia at slow perfusion rates, the measured total ammonia concentration in collected fluid rose to a level predicted by the diffusion trapping model of ammonia secretion in the absence of a luminal disequilibrium pH. We conclude the proximal straight tubule of the rat can absorb bicarbonate at a rate that can account for a large portion of the bicarbonate absorption measured in vivo between the late proximal convoluted tubule and the early distal tubule, the rat proximal straight tubule is capable of transepithelial ammonia secretion, most likely by NH3 diffusion down a concentration gradient generated by luminal acidification, and the rat proximal straight tubule apparently does not generate a luminal disequilibrium pH despite the occurrence of proton secretion, implying the presence of endogenous luminal carbonic anhydrase.

PubMed Disclaimer

LinkOut - more resources