iSnoDi-LSGT: identifying snoRNA-disease associations based on local similarity constraints and global topological constraints
- PMID: 36192132
- PMCID: PMC9670808
- DOI: 10.1261/rna.079325.122
iSnoDi-LSGT: identifying snoRNA-disease associations based on local similarity constraints and global topological constraints
Abstract
Growing evidence proves that small nucleolar RNAs (snoRNAs) have important functions in various biological processes, the malfunction of which leads to the emergence and development of complex diseases. However, identifying snoRNA-disease associations is an ongoing challenging task due to the considerable time- and money-consuming biological experiments. Therefore, it is urgent to design efficient and economical methods for the identification of snoRNA-disease associations. In this regard, we propose a computational method named iSnoDi-LSGT, which utilizes snoRNA sequence similarity and disease similarity as local similarity constraints. The iSnoDi-LSGT predictor further employs network embedding technology to extract topological features of snoRNAs and diseases, based on which snoRNA topological similarity and disease topological similarity are calculated as global topological constraints. To the best of our knowledge, the iSnoDi-LSGT is the first computational method for snoRNA-disease association identification. The experimental results indicate that the iSnoDi-LSGT predictor can effectively predict unknown snoRNA-disease associations. The web server of the iSnoDi-LSGT predictor is freely available at http://bliulab.net/iSnoDi-LSGT.
Keywords: global topological constraint; local similarity constraint; network embedding technology; snoRNA-disease association identification.
© 2022 Zhang and Liu; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Figures



Similar articles
-
iSnoDi-MDRF: Identifying snoRNA-Disease Associations Based on Multiple Biological Data by Ranking Framework.IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):3013-3019. doi: 10.1109/TCBB.2023.3258448. Epub 2023 Oct 9. IEEE/ACM Trans Comput Biol Bioinform. 2023. PMID: 37030816
-
GBDTSVM: Combined Support Vector Machine and Gradient Boosting Decision Tree Framework for efficient snoRNA-disease association prediction.Comput Biol Med. 2025 Jun;192(Pt A):110219. doi: 10.1016/j.compbiomed.2025.110219. Epub 2025 Apr 26. Comput Biol Med. 2025. PMID: 40288295
-
IGCNSDA: unraveling disease-associated snoRNAs with an interpretable graph convolutional network.Brief Bioinform. 2024 Mar 27;25(3):bbae179. doi: 10.1093/bib/bbae179. Brief Bioinform. 2024. PMID: 38647155 Free PMC article.
-
Small nucleolar RNA and its potential role in breast cancer - A comprehensive review.Biochim Biophys Acta Rev Cancer. 2021 Jan;1875(1):188501. doi: 10.1016/j.bbcan.2020.188501. Epub 2021 Jan 2. Biochim Biophys Acta Rev Cancer. 2021. PMID: 33400969 Review.
-
Processing of snoRNAs as a new source of regulatory non-coding RNAs: snoRNA fragments form a new class of functional RNAs.Bioessays. 2013 Jan;35(1):46-54. doi: 10.1002/bies.201200117. Epub 2012 Nov 26. Bioessays. 2013. PMID: 23180440 Free PMC article. Review.
Cited by
-
GL4SDA: Predicting snoRNA-disease associations using GNNs and LLM embeddings.Comput Struct Biotechnol J. 2025 Mar 12;27:1023-1033. doi: 10.1016/j.csbj.2025.03.014. eCollection 2025. Comput Struct Biotechnol J. 2025. PMID: 40160859 Free PMC article.
-
SAGESDA: Multi-GraphSAGE networks for predicting SnoRNA-disease associations.Curr Res Struct Biol. 2023 Dec 29;7:100122. doi: 10.1016/j.crstbi.2023.100122. eCollection 2024. Curr Res Struct Biol. 2023. PMID: 38188542 Free PMC article.
-
DiSMVC: a multi-view graph collaborative learning framework for measuring disease similarity.Bioinformatics. 2024 May 2;40(5):btae306. doi: 10.1093/bioinformatics/btae306. Bioinformatics. 2024. PMID: 38715444 Free PMC article.
-
Unlocking the life code: a review of SnoRNA functional diversity and disease relevance.Cell Commun Signal. 2025 Jun 4;23(1):266. doi: 10.1186/s12964-025-02274-0. Cell Commun Signal. 2025. PMID: 40468441 Free PMC article. Review.
-
Graph Convolutional Network and Contrastive Learning Small Nucleolar RNA (snoRNA) Disease Associations (GCLSDA): Predicting snoRNA-Disease Associations via Graph Convolutional Network and Contrastive Learning.Int J Mol Sci. 2023 Sep 22;24(19):14429. doi: 10.3390/ijms241914429. Int J Mol Sci. 2023. PMID: 37833876 Free PMC article.
References
-
- Bouchard-Bourelle P, Desjardins-Henri C, Mathurin-St-Pierre D, Deschamps-Francoeur G, Fafard-Couture É, Garant J-M, Elela SA, Scott MS. 2020. snoDB: an interactive database of human snoRNA sequences, abundance and interactions. Nucleic Acids Res 48: D220–D225. 10.1093/nar/gkz884 - DOI - PMC - PubMed
-
- Bragantini B, Charron C, Bourguet M, Paul A, Tiotiu D, Rothé B, Marty H, Terral G, Hessmann S, Decourty L, et al. 2021. The box C/D snoRNP assembly factor Bcd1 interacts with the histone chaperone Rtt106 and controls its transcription dependent activity. Nat Commun 12: 1859. 10.1038/s41467-021-22077-4 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources