Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct 18;56(20):14528-14538.
doi: 10.1021/acs.est.2c05625. Epub 2022 Oct 4.

Algal Density Controls the Spatial Variations in Hg Bioconcentration and Bioaccumulation at the Base of the Pelagic Food Web of Lake Taihu, China

Affiliations

Algal Density Controls the Spatial Variations in Hg Bioconcentration and Bioaccumulation at the Base of the Pelagic Food Web of Lake Taihu, China

Pengwei Li et al. Environ Sci Technol. .

Abstract

Algal density can significantly impact mercury (Hg) bioaccumulation and biomagnification in aquatic food webs, but the underlying mechanisms remain controversial especially in subtropical and tropical regions. We conducted a comprehensive field study on Hg bioconcentration in phytoplankton and bioaccumulation in size-fractionated zooplankton across 17 sampling sites in Lake Taihu, a large shallow lake in eastern China with large spatial differences in algal density. The higher algal density in the northern sites is highly associated with the lower THg bioconcentration factor (BCF) in phytoplankton and lower THg bioaccumulation factor (BAF) in zooplankton. The low Hg BCFs or BAFs at productive sites could not be explained by algal bloom dilution but attributed to the low Hg bioavailability, which is highly associated with the elevated pH levels at productive sites. The smaller body size of the dominant zooplankton species at higher algal density sites also contributed to their lower Hg bioaccumulation. Importantly, we provide evidence that high algal density is associated with a low proportion of methylmercury (MeHg) in total Hg (% MeHg) in phytoplankton, which is further transferred to zooplankton. Such a low THg BCF or BAF and low % MeHg in plankton at high algal density sites hamper the entry of Hg into the pelagic food webs, which are important but yet underestimated driving forces for the low Hg contents in pelagic fish that are commonly observed in anthropogenic-impacted eutrophic lakes in subtropical regions.

Keywords: algal bloom; bioaccumulation; bioconcentration; mercury; planktonic food web.

PubMed Disclaimer

Publication types

LinkOut - more resources