Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct 28;7(10):2987-2994.
doi: 10.1021/acssensors.2c01203. Epub 2022 Oct 4.

Hyperpolarized (1-13C)Alaninamide Is a Multifunctional In Vivo Sensor of Aminopeptidase N Activity, pH, and CO2

Affiliations

Hyperpolarized (1-13C)Alaninamide Is a Multifunctional In Vivo Sensor of Aminopeptidase N Activity, pH, and CO2

Alice Radaelli et al. ACS Sens. .

Abstract

Spin hyperpolarization enables real-time metabolic imaging of carbon-13-labeled substrates. While hyperpolarized l-(1-13C)alaninamide is a probe of the cell-surface tumor marker aminopeptidase-N (APN, CD13), its activity in vivo has not been described. Scanning the kidneys of rats infused with hyperpolarized alaninamide shows both conversion to [1-13C]alanine and several additional spectral peaks with distinct temporal dynamics. The (1-13C)alaninamide chemical shift is pH-sensitive, with a pKa of 7.9 at 37 °C, and the peaks correspond to at least three different compartments of pH 7.46 ± 0.02 (1), 7.21 ± 0.02 (2), and 6.58 ± 0.05 (3). An additional peak was assigned to the carboxyamino adduct formed by reaction with dissolved CO2. Spectroscopic imaging showed nonuniform distribution, with the low-pH signal more concentrated in the inner medulla. Treatment with the diuretic acetazolamide resulted in significant pH shifts in compartment 1 to 7.38 ± 0.03 (p = 0.0057) and compartment 3 to 6.80 ± 0.05 (p = 0.0019). While the pH of compartment 1 correlates with blood pH, the pH of compartment 3 did not correspond to the pH of urine. In vitro experiments show that alaninamide readily enters blood cells and can detect intracellular pH. While carbamate formation depends on pH and pCO2, the carbamate-to-alaninamide ratio did not correlate with either arterial blood pH or pCO2, suggesting that it may reflect variations in tissue pH and pCO2. This study demonstrates the feasibility of using hyperpolarized sensors to simultaneously image enzyme activity, pCO2, and pH in vivo.

Keywords: APN; carbamate; carbon-13; dynamic nuclear polarization; functional imaging; kidney; magnetic resonance; pCO2.

PubMed Disclaimer

Publication types

LinkOut - more resources