Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct 19;24(40):24734-24747.
doi: 10.1039/d2cp02564g.

Nanoconfinement effects on water in narrow graphene-based slit pores as revealed by THz spectroscopy

Affiliations

Nanoconfinement effects on water in narrow graphene-based slit pores as revealed by THz spectroscopy

Sergi Ruiz-Barragan et al. Phys Chem Chem Phys. .

Abstract

The properties of water at interfaces have long been known to differ from those of bulk water in many distinctive ways. More recently, specific confinement effects different from mere interfacial effects have been discovered upon enclosing water in very narrow cylindrical pores and planar surfaces as offered by nanotubes and slit pores, respectively. Using experimental and theoretical THz spectroscopy, we elucidate nanoconfinement effects on the H-bond network of stratified water lamellae that are hosted within graphene-based two-dimensional pores. Characteristic confinement-induced changes of the THz response are traced back to the level of structural dynamics, notably distinct resonances due to intralayer and interlayer H-bonds at correspondingly low and high intermolecular stretching frequencies and impact of dangling (free) OH bonds at the water-graphene interface that enormously broaden the librational band in sufficiently narrow pores. The interplay of these molecular effects causes characteristic changes of the THz lineshape upon nanoconfining water.

PubMed Disclaimer

LinkOut - more resources