Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct 5;12(1):16664.
doi: 10.1038/s41598-022-20813-4.

Optimized parameters for effective SARS-CoV-2 inactivation using UVC-LED at 275 nm

Affiliations

Optimized parameters for effective SARS-CoV-2 inactivation using UVC-LED at 275 nm

Cheulkyu Lee et al. Sci Rep. .

Abstract

The spread of SARS-CoV-2 infections and the severity of the coronavirus disease of 2019 (COVID-19) pandemic have resulted in the rapid development of medications, vaccines, and countermeasures to reduce viral transmission. Although new treatment strategies for preventing SARS-CoV-2 infection are available, viral mutations remain a serious threat to the healthcare community. Hence, medical devices equipped with virus-eradication features are needed to prevent viral transmission. UV-LEDs are gaining popularity in the medical field, utilizing the most germicidal UVC spectrum, which acts through photoproduct formation. Herein, we developed a portable and rechargeable medical device that can disinfect SARS-CoV-2 in less than 10 s by 99.9%, lasting 6 h. Using this device, we investigated the antiviral effect of UVC-LED (275 nm) against SARS-CoV-2 as a function of irradiation distance and exposure time. Irradiation distance of 10-20 cm, < 10 s exposure time, and UV doses of > 10 mJ/cm2 were determined optimal for SARS-CoV-2 elimination (≥ 99.99% viral reduction). The UVC-LED systems have advantages such as fast-stabilizing intensity and insensitivity to temperature, and may contribute to developing medical devices capable of containing SARS-CoV-2 infection. By demonstrating SARS-CoV-2 inactivation with very short-term UVC-LED irradiation, our study may suggest guidelines for securing a safer medical environment.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
UV-LED irradiance as a function of wavelength. UV light corresponds to the area of light with wavelengths between 100 and 400 nm; a wavelength of 275 nm showed the highest measured irradiance in our study.
Figure 2
Figure 2
Schematic representation of UV irradiation test against SARS-CoV-2. The virus was exposed to ultraviolet C (UVC) at distances of 10, 20, 30, and 50 cm. The virus treated under each condition was serially diluted and infected into Vero E6 cells.
Figure 3
Figure 3
Crystal violet staining of Vero E6 cells infected with UV-irradiated SARS-CoV-2. Vero E6 cells were infected with UV-irradiated virus and incubated for 3 days. Cells were then stained with a crystal violet solution.
Figure 4
Figure 4
Verification of SARS-CoV-2 reduction as a function of ultraviolet C (UVC) exposure time and distance. After staining Vero E6 cells with crystal violet, 50% tissue culture infective dose (TCID50) was calculated using the Spearman–Karber method. (A) Determination of viral titer at variable radiation exposure time and distance between the UV light-emitting diode (UV-LED) and plated virus. (B) Determination of viral reduction rate over time at varying UV irradiation distance (*p ≤ 0.05, **p ≤ 0.005, ***p ≤ 0.0005 vs. 50 cm condition).
Figure 5
Figure 5
Verification of the SARS-CoV-2 titer reduction at different ultraviolet C (UVC) radiation doses. UV irradiance was deduced based on exposure time and distance between the UV light-emitting diode (UV-LED) and virus. (A) The variance of viral titer due to UV irradiation. (B) Evaluation of virus reduction rate by UV irradiation. The titer of non-irradiated virus was used as a negative control. ***p ≤ 0.0005.

References

    1. Wölfel R, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465–469. doi: 10.1038/s41586-020-2196-x. - DOI - PubMed
    1. Kampf G, et al. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020;104:246–251. doi: 10.1016/j.jhin.2020.01.022. - DOI - PMC - PubMed
    1. van Doremalen N, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020;382:1564–1567. doi: 10.1056/NEJMc2004973. - DOI - PMC - PubMed
    1. Raeiszadeh M, Adeli B. A critical review on ultraviolet disinfection systems against COVID-19 outbreak: applicability, validation, and safety considerations. ACS Photon. 2020;7:2941–2951. doi: 10.1021/acsphotonics.0c01245. - DOI - PubMed
    1. Nishisaka-Nonaka R, et al. Irradiation by ultraviolet light-emitting diodes inactivates influenza a viruses by inhibiting replication and transcription of viral RNA in host cells. J. Photochem. Photobiol. B Biol. 2018;189:193–200. doi: 10.1016/j.jphotobiol.2018.10.017. - DOI - PubMed

Publication types

Substances