Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022;29(12):1007-1015.
doi: 10.2174/0929866529666221003124202.

Targeting K-Ras Mutations Show Promise Towards Ending Ras's "Undruggable" Era

Affiliations
Review

Targeting K-Ras Mutations Show Promise Towards Ending Ras's "Undruggable" Era

Paul D Adams et al. Protein Pept Lett. 2022.

Abstract

It has almost been 40 years since the Ras proteins were discovered as the first human oncogenes. They remain among the most important genes for regulating mammalian cell growth and are involved in more than a quarter of human cancers. Out of 167 members of the Ras superfamily, KRas mutations are the most abundant in human cancers. Particularly, the K-Ras G12C mutations are known to be involved in pancreatic, colon and lung cancers as well as leukemias. Though progress has been made, approaches targeting Ras proteins for therapeutic purposes remain challenging. No drugs treating Ras-related cancers are currently on the market. However, there is now renewed interest in the Ras area, and newer approaches have highlighted the targeting of several types of tumors and treating cancer patients. This review will summarize recent K-Ras drug candidates and approaches in the preclinical, clinical and post-clinical pipelines that show promise for targeting and reducing Ras-related tumors. Macromolecules such as mRNA vaccines, siRNA, and T-cell receptors that target Ras will also be discussed. The newer molecules and the recent approaches to be discussed suggest that the "undruggable" era of Ras proteins could be coming to an end.

Keywords: G12C; K-Ras inhibitors; K-Ras mutations; Ras proteins; combination therapy; undruggable.

PubMed Disclaimer

Similar articles

Cited by