Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 22;24(11):1777-1787.
doi: 10.1093/europace/euac135.

Machine learning in sudden cardiac death risk prediction: a systematic review

Affiliations

Machine learning in sudden cardiac death risk prediction: a systematic review

Joseph Barker et al. Europace. .

Abstract

Aims: Most patients who receive implantable cardioverter defibrillators (ICDs) for primary prevention do not receive therapy during the lifespan of the ICD, whilst up to 50% of sudden cardiac death (SCD) occur in individuals who are considered low risk by conventional criteria. Machine learning offers a novel approach to risk stratification for ICD assignment.

Methods and results: Systematic search was performed in MEDLINE, Embase, Emcare, CINAHL, Cochrane Library, OpenGrey, MedrXiv, arXiv, Scopus, and Web of Science. Studies modelling SCD risk prediction within days to years using machine learning were eligible for inclusion. Transparency and quality of reporting (TRIPOD) and risk of bias (PROBAST) were assessed. A total of 4356 studies were screened with 11 meeting the inclusion criteria with heterogeneous populations, methods, and outcome measures preventing meta-analysis. The study size ranged from 122 to 124 097 participants. Input data sources included demographic, clinical, electrocardiogram, electrophysiological, imaging, and genetic data ranging from 4 to 72 variables per model. The most common outcome metric reported was the area under the receiver operator characteristic (n = 7) ranging between 0.71 and 0.96. In six studies comparing machine learning models and regression, machine learning improved performance in five. No studies adhered to a reporting standard. Five of the papers were at high risk of bias.

Conclusion: Machine learning for SCD prediction has been under-applied and incorrectly implemented but is ripe for future investigation. It may have some incremental utility in predicting SCD over traditional models. The development of reporting standards for machine learning is required to improve the quality of evidence reporting in the field.

Keywords: Deep learning; Implantable cardioverter-defibrillator; Machine learning; Prediction; Sudden cardiac death; Systematic review.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest: None declared.

Publication types

MeSH terms

LinkOut - more resources