Cyclopropenes for the Stepwise Synthesis of 1,2,4,5-Tetraarylbenzenes via 1,4-Cyclohexadienes
- PMID: 36201259
- PMCID: PMC9639005
- DOI: 10.1021/acs.joc.2c01261
Cyclopropenes for the Stepwise Synthesis of 1,2,4,5-Tetraarylbenzenes via 1,4-Cyclohexadienes
Abstract
This paper describes a synthetic approach to the synthesis of 1,2,4,5-tetraarylbenzene derivatives from cyclopropenes. The Lewis acid-mediated dimerization of cyclopropenes gives tricyclo[3.1.0.02,4]hexane derivatives. The subsequent thermal ring-opening reaction under solvent-free conditions gives 1,4-cyclohexadienes bearing quaternary carbons. The novel Br2-mediated oxidative rearrangement of 1,4-cyclohexadienes takes place to give 1,2,4,5-tetraarylbenzene derivatives in high to excellent yields.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
Similar articles
-
Intramolecular cyclopropanation and C-H insertion reactions with metal carbenoids generated from cyclopropenes.Acc Chem Res. 2015 Apr 21;48(4):1021-31. doi: 10.1021/acs.accounts.5b00016. Epub 2015 Mar 12. Acc Chem Res. 2015. PMID: 25763601
-
Highly efficient non-palladium-catalyzed controlled synthesis and X-ray analysis of functionalized 1,2-diaryl-, 1,2,3-triaryl-, and 1,2,3,4-tetraarylbenzenes.Chem Asian J. 2007 Feb 5;2(2):239-47. doi: 10.1002/asia.200600278. Chem Asian J. 2007. PMID: 17441158
-
Asymmetric Construction of 3-Azabicyclo[3.1.0]hexane Skeleton with Five Contiguous Stereogenic Centers by Cu-Catalyzed 1,3-Dipolar Cycloaddition of Trisubstituted Cyclopropenes.Org Lett. 2018 Jul 6;20(13):4121-4125. doi: 10.1021/acs.orglett.8b01686. Epub 2018 Jun 26. Org Lett. 2018. PMID: 29943995
-
Construction of heterocyclic rings from cyclopropenes.Org Biomol Chem. 2022 May 18;20(19):3847-3869. doi: 10.1039/d1ob02450g. Org Biomol Chem. 2022. PMID: 35470816 Review.
-
Tuning the Reactivity of Cyclopropenes from Living Ring-Opening Metathesis Polymerization (ROMP) to Single-Addition and Alternating ROMP.Angew Chem Int Ed Engl. 2019 Dec 2;58(49):17771-17776. doi: 10.1002/anie.201909688. Epub 2019 Oct 22. Angew Chem Int Ed Engl. 2019. PMID: 31571344 Review.
Cited by
-
Stereoselective Synthesis of Highly Functionalized Bicyclo[2.1.0]pentanes by Sequential [2 + 1] and [2 + 2] Cycloadditions.Org Lett. 2025 Feb 21;27(7):1673-1678. doi: 10.1021/acs.orglett.5c00054. Epub 2025 Feb 10. Org Lett. 2025. PMID: 39928956 Free PMC article.
References
-
-
For chiral 1,4-cyclohexadienes for transition metals, see:
- Nagamoto M.; Nishimura T. Asymmetric Transformations under Iridium/Chiral Diene Catalysis. ACS Catal. 2017, 7, 833–847. 10.1021/acscatal.6b02495. - DOI
-
Aromatization from 1,4-cyclohexadienes is one of the promising route to cycloparaphenylene derivatives, see:
- Martí-Centelles V.; Pandey M. D.; Burguete M. I.; Luis S. V. Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. Chem. Rev. 2015, 115, 8736–8834. 10.1021/acs.chemrev.5b00056. - DOI - PubMed
-
-
- Kim J.; Teo H. T.; Hong Y.; Oh J.; Kim H.; Chi C.; Kim D. Multiexcitonic Triplet Pair Generation in Oligoacene Dendrimers as Amorphous Solid-State Miniatures. Angew. Chem. Int. Ed. 2020, 59, 20956–20964. 10.1002/anie.202008533. - DOI - PubMed
- Kumar S.; Huang D.-C.; Venkateswarlu S.; Tao Y.-T. Nonlinear Polyfused Aromatics with Extended π-Conjugation from Phenanthrotriphenylene, Tetracene, and Pentacene: Syntheses, Crystal Packings, and Properties. J. Org. Chem. 2018, 83, 11614–11622. 10.1021/acs.joc.8b01582. - DOI - PubMed
- Steiner A.-K.; Amsharov K. Y. The Rolling-Up of Oligophenylenes to Nanographenes by a HF-Zipping Approach. Angew. Chem. Int. Ed. 2017, 56, 14732–14736. 10.1002/anie.201707272. - DOI - PubMed
- Liu J.; Ma J.; Zhang K.; Ravat P.; Machata P.; Avdoshenko S.; Hennersdorf F.; Komber H.; Pisula W.; Weigand J. J.; Popov A. A.; Berger R.; Müllen K.; Feng X. π-Extended and Curved Antiaromatic Polycyclic Hydrocarbons. J. Am. Chem. Soc. 2017, 139, 7513–7521. 10.1021/jacs.7b01619. - DOI - PubMed
-
-
For the synthesis of 1,4-cyclohexadienes, see:
- Fedyushin P. A.; Peshkov R. Y.; Panteleeva E. V.; Tretyakov E. V.; Beregovaya I. V.; Gatilov Y. V.; Shteingarts V. D. Purposeful regioselectivity control of the Birch reductive alkylation of biphenyl-4-carbonitrile. Tetrahedron 2018, 74, 842–851. 10.1016/j.tet.2017.12.046. - DOI
- Pogula V. D.; Wang T.; Hoye T. R. Intramolecular [4 + 2] Trapping of a Hexadehydro-Diels-Alder (HDDA) Benzyne by Tethered Arenes. Org. Lett. 2015, 17, 856–859. 10.1021/ol5037024. - DOI - PMC - PubMed
- Bennett N. J.; Elliott M. C.; Hewitt N. L.; Kariuki B. M.; Morton C. A.; Raw S. A.; Tomasi S. Diastereoselective alkylation reactions of 1-methylcyclohexa-2,5-diene-1-carboxylic acid. Org. Biomol. Chem. 2012, 10, 3859–3865. 10.1039/c2ob25211b. - DOI - PubMed
- Bramborg A.; Linker T. Regioselective Synthesis of Alkylarenes by Two-Step ipso-Substitution of Aromatic Dicarboxylic Acids. Eur. J. Org. Chem. 2012, 5552–5563. 10.1002/ejoc.201200823. - DOI
- Iwasaki H.; Tsutsui N.; Eguchi T.; Ohno H.; Yamashita M.; Tanaka T. A novel samarium(II)-mediated tandem spirocyclization onto an aromatic ring. Tetrahedron Lett. 2011, 52, 1770–1772. 10.1016/j.tetlet.2011.02.010. - DOI
- Bramborg A.; Linker T. Selective Synthesis of 1,4-Dialkylbenzenes from Terephthalic Acid. Adv. Synth. Catal. 2010, 352, 2195–2199. 10.1002/adsc.201000322. - DOI
- Ohno H.; Okumura M.; Maeda S.; Iwasaki H.; Wakayama R.; Tanaka T. Samarium(II)-Promoted Radical Spirocyclization onto an Aromatic Ring. J. Org. Chem. 2003, 68, 7722–7732. 10.1021/jo034767w. - DOI - PubMed
- Kiwus R.; Schwarz W.; Roßnagel I.; Musso H. Hydrogenolyse kleiner Kohlenstoffringe, XV über die Hydrierung von Dispiro[2.2.2.2]deca-4,9-dien. Chem. Ber. 1987, 120, 435–438. 10.1002/cber.19871200330. - DOI
- Kraakman P. A.; Nibbering E. T. J.; De Wolf W. H.; Bickelhaupt F. Flash vacuum thermolysis of dispiro[2.2.n.2]alkadienes. Tetrahedron 1987, 43, 5109–5124. 10.1016/S0040-4020(01)87687-0. - DOI
-
-
- Nakano T.; Endo K.; Ukaji Y. Silver-Catalyzed Allylation of Ketones and Intramolecular Cyclization through Carbene Intermediates from Cyclopropenes Under Ambient Conditions. Chem. Asian. J. 2016, 11, 713–721. 10.1002/asia.201501196. - DOI - PubMed
- Nakano T.; Endo K.; Ukaji Y. Copper(I)-Catalyzed Carbometalation of Nonfunctionalized Cyclopropenes Using Organozinc and Grignard Reagents. Synlett 2015, 26, 671–675. 10.1055/s-0034-1379959. - DOI
- Nakano T.; Endo K.; Ukaji Y. Catalytic Tandem C–C Bond Formation/Cleavage of Cyclopropene for Allylzincation of Aldehydes or Aldimine Using Organozinc Reagents. Org. Lett. 2014, 16, 1418–1421. 10.1021/ol500208r. - DOI - PubMed
- Endo K.; Nakano T.; Fujinami S.; Ukaji Y. Chemoselective Carbozincation of Cyclopropene for C–C Bond Formation and Cleavage in a Single Operation. Eur. J. Org. Chem. 2013, 6514–6518. 10.1002/ejoc.201301026. - DOI
-
- Sherrill W. M.; Rubin M. Rhodium-Catalyzed Hydroformylation of Cyclopropenes. J. Am. Chem. Soc. 2008, 130, 13804–13809. 10.1021/ja805059f. - DOI - PubMed
- Peganova T. A.; Petrovskii P. V.; Isaeva L. S.; Kravtsov D. N.; Furman D. B.; Kudryashev A. V.; Ivanov A. O.; Zotova S. V.; Bragin O. V. Bis(triphenylphosphine)-5-nickela-3,3,7,7-tetramethyl-trans-tricyclo[4.1.0.02,4]heptane. J. Organomet. Chem. 1985, 282, 283–289. 10.1016/0022-328X(85)87179-5. - DOI
- Binger P.; McMeeking J.; Schäfer H. Reaktionen der Cyclopropene, VI. Nickel(0)-katalysierte [2 + 1]-Cycloadditionen von 3,3-Diorganylcyclopropenen mit elektronenarmen Olefinen. Chem. Ber. 1984, 117, 1551–1560. 10.1002/cber.19841170423. - DOI
LinkOut - more resources
Full Text Sources