Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 4;87(21):14833-14839.
doi: 10.1021/acs.joc.2c01261. Epub 2022 Oct 6.

Cyclopropenes for the Stepwise Synthesis of 1,2,4,5-Tetraarylbenzenes via 1,4-Cyclohexadienes

Affiliations

Cyclopropenes for the Stepwise Synthesis of 1,2,4,5-Tetraarylbenzenes via 1,4-Cyclohexadienes

Satoshi Kishida et al. J Org Chem. .

Abstract

This paper describes a synthetic approach to the synthesis of 1,2,4,5-tetraarylbenzene derivatives from cyclopropenes. The Lewis acid-mediated dimerization of cyclopropenes gives tricyclo[3.1.0.02,4]hexane derivatives. The subsequent thermal ring-opening reaction under solvent-free conditions gives 1,4-cyclohexadienes bearing quaternary carbons. The novel Br2-mediated oxidative rearrangement of 1,4-cyclohexadienes takes place to give 1,2,4,5-tetraarylbenzene derivatives in high to excellent yields.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Synthetic approach to 1,2,4,5-tetraarylbenzenes 4.
Figure 2
Figure 2
Speculated mechanism of the [2 + 2]-type reaction.
Scheme 1
Scheme 1. Oxidative Rearrangement of 3c
Figure 3
Figure 3
Proposed mechanism for dehydrogenative rearrangement.

Similar articles

Cited by

References

    1. For chiral 1,4-cyclohexadienes for transition metals, see:

    2. Nagamoto M.; Nishimura T. Asymmetric Transformations under Iridium/Chiral Diene Catalysis. ACS Catal. 2017, 7, 833–847. 10.1021/acscatal.6b02495. - DOI
    3. Aromatization from 1,4-cyclohexadienes is one of the promising route to cycloparaphenylene derivatives, see:

    4. Martí-Centelles V.; Pandey M. D.; Burguete M. I.; Luis S. V. Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. Chem. Rev. 2015, 115, 8736–8834. 10.1021/acs.chemrev.5b00056. - DOI - PubMed
    1. Kim J.; Teo H. T.; Hong Y.; Oh J.; Kim H.; Chi C.; Kim D. Multiexcitonic Triplet Pair Generation in Oligoacene Dendrimers as Amorphous Solid-State Miniatures. Angew. Chem. Int. Ed. 2020, 59, 20956–20964. 10.1002/anie.202008533. - DOI - PubMed
    2. Kumar S.; Huang D.-C.; Venkateswarlu S.; Tao Y.-T. Nonlinear Polyfused Aromatics with Extended π-Conjugation from Phenanthrotriphenylene, Tetracene, and Pentacene: Syntheses, Crystal Packings, and Properties. J. Org. Chem. 2018, 83, 11614–11622. 10.1021/acs.joc.8b01582. - DOI - PubMed
    3. Steiner A.-K.; Amsharov K. Y. The Rolling-Up of Oligophenylenes to Nanographenes by a HF-Zipping Approach. Angew. Chem. Int. Ed. 2017, 56, 14732–14736. 10.1002/anie.201707272. - DOI - PubMed
    4. Liu J.; Ma J.; Zhang K.; Ravat P.; Machata P.; Avdoshenko S.; Hennersdorf F.; Komber H.; Pisula W.; Weigand J. J.; Popov A. A.; Berger R.; Müllen K.; Feng X. π-Extended and Curved Antiaromatic Polycyclic Hydrocarbons. J. Am. Chem. Soc. 2017, 139, 7513–7521. 10.1021/jacs.7b01619. - DOI - PubMed
    1. For the synthesis of 1,4-cyclohexadienes, see:

    2. Fedyushin P. A.; Peshkov R. Y.; Panteleeva E. V.; Tretyakov E. V.; Beregovaya I. V.; Gatilov Y. V.; Shteingarts V. D. Purposeful regioselectivity control of the Birch reductive alkylation of biphenyl-4-carbonitrile. Tetrahedron 2018, 74, 842–851. 10.1016/j.tet.2017.12.046. - DOI
    3. Pogula V. D.; Wang T.; Hoye T. R. Intramolecular [4 + 2] Trapping of a Hexadehydro-Diels-Alder (HDDA) Benzyne by Tethered Arenes. Org. Lett. 2015, 17, 856–859. 10.1021/ol5037024. - DOI - PMC - PubMed
    4. Bennett N. J.; Elliott M. C.; Hewitt N. L.; Kariuki B. M.; Morton C. A.; Raw S. A.; Tomasi S. Diastereoselective alkylation reactions of 1-methylcyclohexa-2,5-diene-1-carboxylic acid. Org. Biomol. Chem. 2012, 10, 3859–3865. 10.1039/c2ob25211b. - DOI - PubMed
    5. Bramborg A.; Linker T. Regioselective Synthesis of Alkylarenes by Two-Step ipso-Substitution of Aromatic Dicarboxylic Acids. Eur. J. Org. Chem. 2012, 5552–5563. 10.1002/ejoc.201200823. - DOI
    6. Iwasaki H.; Tsutsui N.; Eguchi T.; Ohno H.; Yamashita M.; Tanaka T. A novel samarium(II)-mediated tandem spirocyclization onto an aromatic ring. Tetrahedron Lett. 2011, 52, 1770–1772. 10.1016/j.tetlet.2011.02.010. - DOI
    7. Bramborg A.; Linker T. Selective Synthesis of 1,4-Dialkylbenzenes from Terephthalic Acid. Adv. Synth. Catal. 2010, 352, 2195–2199. 10.1002/adsc.201000322. - DOI
    8. Ohno H.; Okumura M.; Maeda S.; Iwasaki H.; Wakayama R.; Tanaka T. Samarium(II)-Promoted Radical Spirocyclization onto an Aromatic Ring. J. Org. Chem. 2003, 68, 7722–7732. 10.1021/jo034767w. - DOI - PubMed
    9. Kiwus R.; Schwarz W.; Roßnagel I.; Musso H. Hydrogenolyse kleiner Kohlenstoffringe, XV über die Hydrierung von Dispiro[2.2.2.2]deca-4,9-dien. Chem. Ber. 1987, 120, 435–438. 10.1002/cber.19871200330. - DOI
    10. Kraakman P. A.; Nibbering E. T. J.; De Wolf W. H.; Bickelhaupt F. Flash vacuum thermolysis of dispiro[2.2.n.2]alkadienes. Tetrahedron 1987, 43, 5109–5124. 10.1016/S0040-4020(01)87687-0. - DOI
    1. Nakano T.; Endo K.; Ukaji Y. Silver-Catalyzed Allylation of Ketones and Intramolecular Cyclization through Carbene Intermediates from Cyclopropenes Under Ambient Conditions. Chem. Asian. J. 2016, 11, 713–721. 10.1002/asia.201501196. - DOI - PubMed
    2. Nakano T.; Endo K.; Ukaji Y. Copper(I)-Catalyzed Carbometalation of Nonfunctionalized Cyclopropenes Using Organozinc and Grignard Reagents. Synlett 2015, 26, 671–675. 10.1055/s-0034-1379959. - DOI
    3. Nakano T.; Endo K.; Ukaji Y. Catalytic Tandem C–C Bond Formation/Cleavage of Cyclopropene for Allylzincation of Aldehydes or Aldimine Using Organozinc Reagents. Org. Lett. 2014, 16, 1418–1421. 10.1021/ol500208r. - DOI - PubMed
    4. Endo K.; Nakano T.; Fujinami S.; Ukaji Y. Chemoselective Carbozincation of Cyclopropene for C–C Bond Formation and Cleavage in a Single Operation. Eur. J. Org. Chem. 2013, 6514–6518. 10.1002/ejoc.201301026. - DOI
    1. Sherrill W. M.; Rubin M. Rhodium-Catalyzed Hydroformylation of Cyclopropenes. J. Am. Chem. Soc. 2008, 130, 13804–13809. 10.1021/ja805059f. - DOI - PubMed
    2. Peganova T. A.; Petrovskii P. V.; Isaeva L. S.; Kravtsov D. N.; Furman D. B.; Kudryashev A. V.; Ivanov A. O.; Zotova S. V.; Bragin O. V. Bis(triphenylphosphine)-5-nickela-3,3,7,7-tetramethyl-trans-tricyclo[4.1.0.02,4]heptane. J. Organomet. Chem. 1985, 282, 283–289. 10.1016/0022-328X(85)87179-5. - DOI
    3. Binger P.; McMeeking J.; Schäfer H. Reaktionen der Cyclopropene, VI. Nickel(0)-katalysierte [2 + 1]-Cycloadditionen von 3,3-Diorganylcyclopropenen mit elektronenarmen Olefinen. Chem. Ber. 1984, 117, 1551–1560. 10.1002/cber.19841170423. - DOI