Development of postbiotics by bioconverting whey using Lactobacillus plantarum SMFM2017-YK1 and Limosilactobacillus fermentum SMFM2017-NK1 to alleviate periodontitis
- PMID: 36201532
- PMCID: PMC9536600
- DOI: 10.1371/journal.pone.0263851
Development of postbiotics by bioconverting whey using Lactobacillus plantarum SMFM2017-YK1 and Limosilactobacillus fermentum SMFM2017-NK1 to alleviate periodontitis
Abstract
This study investigated the effects of whey bioconversion products (WBPs) produced by lactic acid bacteria on periodontal disease. WBPs were prepared by fermenting whey with seven lactic acid bacteria, Limosilactobacillus fermentum SMFM2017-CK1 (LF-CK1), L. plantarum SMFM2017-NK2 (LP-NK2), Pediococcus pentosaceus SMFM2017-NK1 (PP-NK1), L. plantarum SMFM2017-NK1 (LP-NK1), L. paraplantarum SMFM2017-YK1 (LPP-YK1), L. plantarum SMFM2017-YK1 (LP-YK1), and L. fermentum SMFM2017-NK1 (LF-NK1)]; the pH of the fermented whey was adjusted to 6.5, followed by centrifugation. WBPs were examined for their effect on cell viability and antimicrobial activity against periodontal pathogens. The selected WBPs were used in animal experiments. After inducing periodontitis through right mandibular first molar ligation, WBPs were administered orally for 8 weeks. After sacrifice, gene and protein expression analyses of genes related to inflammatory and oxidative stress were performed, and histopathological analysis of gingival tissue was conducted. Our results showed that LP-YK1 WBP (WBP produced by LP-YK1) and LF-NK1 WBP (WBP produced by LF-NK1) groups exerted higher anti-inflammatory and antioxidant effects compared to the control group (p < 0.05). Histopathological analysis revealed that infiltration of inflammatory cells and epithelial cell proliferation were reduced in the LP-YK1 WBP group. These results indicate that WBPs prepared with LP-YK1 can be used as a postbiotic to alleviate periodontitis.
Conflict of interest statement
NO authors have competing interests.
Figures
References
-
- Keri Marshall ND. Therapeutic applications of whey protein. Alternative medicine review. 2004; 9(2): 136–156. - PubMed
-
- Xiao Y, Wang L, Rui X, Li W, Chen X, Jiang M, et al.. Enhancement of the antioxidant capacity of soy whey by fermentation with Lactobacillus plantarum B1–6. Journal of Functional Foods. 2015; 12: 33–44.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous
