Potential of Deep Learning in Quantitative Magnetic Resonance Imaging for Personalized Radiotherapy
- PMID: 36202440
- DOI: 10.1016/j.semradonc.2022.06.007
Potential of Deep Learning in Quantitative Magnetic Resonance Imaging for Personalized Radiotherapy
Abstract
Quantitative magnetic resonance imaging (qMRI) has been shown to provide many potential advantages for personalized adaptive radiotherapy (RT). Deep learning models have proven to increase efficiency, robustness and speed for different qMRI tasks. Therefore, this article discusses the current state-of-the-art and potential future opportunities as well as challenges related to the use of deep learning in qMRI for target contouring, quantitative parameter estimation and also the generation of synthetic computerized tomography (CT) data based on MRI in personalized RT.
Copyright © 2022 Elsevier Inc. All rights reserved.
Conflict of interest statement
Conflict of Interest O.J. Gurney-Champion has no conflicts of interest to declare. K.R. Redalen has no conflicts of interest to declare. D. Thorwarth declares institutional collaborations including financial and non-financial support from Elekta, Philips, TheraPanacea, Kaiku and PTW Freiburg. G.Landry: The Department of Radiation Oncology has research agreements with Viewray, Elekta and Brainlab.
Similar articles
-
Intentional deep overfit learning (IDOL): A novel deep learning strategy for adaptive radiation therapy.Med Phys. 2022 Jan;49(1):488-496. doi: 10.1002/mp.15352. Epub 2021 Nov 30. Med Phys. 2022. PMID: 34791672
-
Development of an anthropomorphic multimodality pelvic phantom for quantitative evaluation of a deep-learning-based synthetic computed tomography generation technique.J Appl Clin Med Phys. 2022 Aug;23(8):e13644. doi: 10.1002/acm2.13644. Epub 2022 May 17. J Appl Clin Med Phys. 2022. PMID: 35579090 Free PMC article.
-
Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy.Med Phys. 2019 Sep;46(9):4135-4147. doi: 10.1002/mp.13716. Epub 2019 Aug 7. Med Phys. 2019. PMID: 31309586
-
Deep learning methods to generate synthetic CT from MRI in radiotherapy: A literature review.Phys Med. 2021 Sep;89:265-281. doi: 10.1016/j.ejmp.2021.07.027. Epub 2021 Aug 30. Phys Med. 2021. PMID: 34474325 Review.
-
Improvement of image quality at CT and MRI using deep learning.Jpn J Radiol. 2019 Jan;37(1):73-80. doi: 10.1007/s11604-018-0796-2. Epub 2018 Nov 29. Jpn J Radiol. 2019. PMID: 30498876 Review.
Cited by
-
The role of artificial intelligence in radiotherapy clinical practice.BJR Open. 2023 Oct 18;5(1):20230030. doi: 10.1259/bjro.20230030. eCollection 2023. BJR Open. 2023. PMID: 37942500 Free PMC article. Review.
-
MRI-LINAC: A transformative technology in radiation oncology.Front Oncol. 2023 Jan 27;13:1117874. doi: 10.3389/fonc.2023.1117874. eCollection 2023. Front Oncol. 2023. PMID: 36776309 Free PMC article. Review.
-
Artificial intelligence for treatment delivery: image-guided radiotherapy.Strahlenther Onkol. 2025 Mar;201(3):283-297. doi: 10.1007/s00066-024-02277-9. Epub 2024 Aug 13. Strahlenther Onkol. 2025. PMID: 39138806 Review.
-
Repeatability quantification of brain diffusion-weighted imaging for future clinical implementation at a low-field MR-linac.Radiat Oncol. 2024 Mar 6;19(1):31. doi: 10.1186/s13014-024-02424-7. Radiat Oncol. 2024. PMID: 38448888 Free PMC article.
-
Advancements in synthetic CT generation from MRI: A review of techniques, and trends in radiation therapy planning.J Appl Clin Med Phys. 2024 Nov;25(11):e14499. doi: 10.1002/acm2.14499. Epub 2024 Sep 26. J Appl Clin Med Phys. 2024. PMID: 39325781 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources