Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov;70(6):265-276.
doi: 10.1016/j.respe.2022.08.008. Epub 2022 Sep 13.

Major interregional differences in France of COVID-19 hospitalization and mortality from January to June 2020

Affiliations

Major interregional differences in France of COVID-19 hospitalization and mortality from January to June 2020

Joris Muller et al. Rev Epidemiol Sante Publique. 2022 Nov.

Abstract

Introduction: Even though France was severely hit by the COVID-19 pandemic, few studies have addressed the dynamics of the first wave on an exhaustive, nationwide basis. We aimed to describe the geographic and temporal distribution of COVID-19 hospitalisations and in-hospital mortality in France during the first epidemic wave, from January to June 2020.

Methods: This retrospective cohort study used the French national database for all acute care hospital admissions (PMSI). Contiguous stays were assembled into "care sequences" for analysis so as to limit bias when estimating incidence and mortality. The incidence rate and its evolution, mortality and hospitalized case fatality rates (HCFR) were compared between geographic areas. Correlations between incidence, mortality, and HCFR were analyzed.

Results: During the first epidemic wave, 98,366 COVID-19 patients were hospitalized (incidence rate of 146.7/100,000 inhabitants), of whom 18.8% died. The median age was 71 years, the male/female ratio was 1.16, and 26.2% of patients required critical care. The Paris area and the North-East region were the first and most severely hit areas. A rapid increase of incidence and mortality within 4 weeks was followed by a slow decrease over 10 weeks. HCFRs decreased during the study period, and correlated positively with incidence and mortality rates.

Discussion: By detailing the geographical and temporal evolution of the COVID-19 epidemic in France, this study revealed major interregional differences, which were otherwise undetectable in global analyses. The precision afforded should help to understand the dynamics of future epidemic waves.

Introduction: La France a été fortement touchée par la pandémie de COVID-19, et aucune étude n'a décrit de manière exhaustive son impact sur les hospitalisations. Notre objectif était de décrire la distribution géographique et l’évolution temporelle des hospitalisations liées à la COVID-19 et la mortalité intrahospitalière en France durant la première vague, de janvier à juin 2020.

Méthodes: Cette étude de cohorte rétrospective est basée sur les données de la base nationale du PMSI. Les hospitalisations contiguës ont été rassemblées en « séquences de soins » afin de limiter les biais lors des calculs d'incidence et de mortalité. Les taux d'incidence et leur évolution, la mortalité et le taux de létalité ont été comparés selon différents niveaux géographiques. Les corrélations entre incidence, mortalité et taux de létalité ont été analysées.

Résultats: Durant la première vague épidémique, nous avons dénombré 98 366 patients hospitalisés en France (taux d'incidence 146,7/100 000 habitants), parmi lesquels 18,8 % sont décédés. L’âge médian était de 71 ans, le ratio homme/femme de 1,16 et 26,2 % des patients ont nécessité des soins intensifs. L’Île-de-France et le Grand Est ont été les régions touchées les plus précocement et les plus sévèrement. Une rapide augmentation de l'incidence et de la mortalité sur 4 semaines a été suivie par une lente diminution durant 10 semaines. Le taux de létalité a progressivement diminué durant cette période et était corrélé positivement avec l'incidence et la mortalité.

Discussions: La description géographique et temporelle de cette première vague épidémique de COVID-19 en France montre d'importantes variations régionales et départementales, qu'une analyse globale n'aurait pas pu mettre en évidence. La précision apportée par ces analyses peut aider à mieux comprendre la dynamique de futures vagues épidémiques.

Mots-clés: COVID-19 ; France ; étude de cohorte ; hôpital ; mortalité

Keywords: COVID-19; Cohort studies; France; Hospitals; Mortality.

PubMed Disclaimer

Conflict of interest statement

Ties of interest The authors have no ties of interest to declare.

Figures

Fig. 1
Fig. 1
Population age pyramids of COVID-19 hospitalisations from January to June 2020 in France. Hospitalized case fatality rates (HCFR) are given as percentages, and represented as grey shadows.
Fig. 2
Fig. 2
Evolution by week of (A) the number and the incidence of COVID-19 hospitalisations (B) the number and incidence of COVID-19 patients discharged alive (grey) or deceased (black) and (C) the weekly hospitalised case fatality rates, calculated as the proportion of deaths among all discharged COVID-19 patients. The shaded blue area represents the lockdown period, from March 17 to May 10.
Fig. 3
Fig. 3
Map of France with weekly standardised incidence of COVID-19 hospitalisation according to the patient's department of residence. Each small panel represents a French department, and is positioned approximately so as to elucidate the spatial connections between the different departments. The number at the top left corner of each panel is the department number. The shaded blue area represents the lockdown period, from March 17 to May 10. We considered two thresholds to define the beginning and the end of the wave : 20 (orange line) and 60 (red line)/100 000 inhabitants hospitalised per week. The top left panel represents nationwide incidence by week.
Fig. 4
Fig. 4
Correlations between (A) CMR and CIR, (B) SMR and SIR, (C) HCFR and CIR, (D) HCFR and CMR. Each department is represented by a black dot and labelled. For panels (A) and (B), where CIR and SIR are considered, linear regression is represented by a turquoise line, with prediction limits for the individual predicted values shown as blue lines. For panels (C) and (D), where HCFR is considered, penalised B-spline curve is represented by a turquoise line, with prediction limits for the individual predicted values shown as blue lines. CIR = crude incidence ratio, SIR = standardised (by age and sex) incidence ratio, CMR = crude in-hospital mortality ratio, SMR = standardised (by age and sex) mortality ratio, HCFR = hospitalised case fatality rate.

References

    1. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269. - PMC - PubMed
    1. WHO. Novel Coronavirus – China - disease outbreak news: update . WHO. World Health Organization; 2020 [cited 2021 Feb 17]. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON233
    1. Spiteri G, Fielding J, Diercke M, Campese C, Enouf V, Gaymard A, et al. First cases of coronavirus disease 2019 (COVID-19) in the WHO European region, 24 January to 21 February 2020. Eurosurveill. 2020;25(9) - PMC - PubMed
    1. Carrat F, Figoni J, Henny J, Desenclos JC, Kab S, de Lamballerie X, et al. Evidence of early circulation of SARS-CoV-2 in France: findings from the population-based “CONSTANCES” cohort. Eur J Epidemiol. 2021;36(2):219–222. - PMC - PubMed
    1. Bernard Stoecklin S, Rolland P, Silue Y, Mailles A, Campese C, Simondon A, et al. First cases of coronavirus disease 2019 (COVID-19) in France: surveillance, investigations and control measures, January 2020. Eurosurveill. 2020;25(6) - PMC - PubMed