Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 15:442:130106.
doi: 10.1016/j.jhazmat.2022.130106. Epub 2022 Oct 3.

Highly effective biosorption capacity of Cladosporium sp. strain F1 to lead phosphate mineral and perovskite solar cell PbI2

Affiliations
Free article

Highly effective biosorption capacity of Cladosporium sp. strain F1 to lead phosphate mineral and perovskite solar cell PbI2

Jisu Lee et al. J Hazard Mater. .
Free article

Abstract

Fungus Cladosporium sp. strain F1 showed highly effective biosorption capacity to lead phosphate mineral and perovskite solar cells lead iodide compared to other fungi Aspergillus niger VKMF-1119 and Mucor ramannianus R-56. Scanning electron microscopy and transmission electron microscopy analyses shows that Cladosporium sp. strain F1, which previously showed high biosorption capacity to uranium phosphate nanorods and nanoplates, can accumulate lead phosphate mineral and lead iodide on the fungal hyphae surface in large amounts under a wide range of pH conditions, while A. niger VKMF-1119 and M. ramannianus R-56 adsorbed small amounts of minerals. After biosorption of lead iodide minerals on Cladosporium sp. strain F1, aqueous dimethyl sulfoxide (50%) at pH 2 (70 °C) released the mineral more than 99%. Based on the fungal surface analyses, hydrophobic properties on the surfaces of Cladosporium sp. strain F1 could affect the higher biosorption capacity of strain F1 to lead phosphate mineral and lead iodide as compared to other tested fungi. Cladosporium sp. strain F1 may be the novel biosorbents to remediate the phosphate rich environment and to recover lead from perovskite solar cells lead iodide.

Keywords: Fungus; Heavy metal contamination; Lead sequestration; Recovery.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources