Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 14;114(11):1533-1544.
doi: 10.1093/jnci/djac160.

Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci

Amber A DeVries  1 Joe Dennis  2 Jonathan P Tyrer  3 Pei-Chen Peng  1 Simon G Coetzee  1 Alberto L Reyes  1 Jasmine T Plummer  1   4 Brian D Davis  1   4 Stephanie S Chen  1   4 Felipe Segato Dezem  1 Katja K H Aben  5   6 Hoda Anton-Culver  7 Natalia N Antonenkova  8 Matthias W Beckmann  9 Alicia Beeghly-Fadiel  10 Andrew Berchuck  11 Natalia V Bogdanova  8   12   13 Nadja Bogdanova-Markov  14 James D Brenton  15 Ralf Butzow  16 Ian Campbell  17   18 Jenny Chang-Claude  19   20 Georgia Chenevix-Trench  21 Linda S Cook  22   23 Anna DeFazio  24   25   26 Jennifer A Doherty  27 Thilo Dörk  13 Diana M Eccles  28 A Heather Eliassen  29   30   31 Peter A Fasching  9   32 Renée T Fortner  19 Graham G Giles  33   34   35 Ellen L Goode  36 Marc T Goodman  37 Jacek Gronwald  38 OPAL Study GroupAOCS GroupNiclas Håkansson  39 Michelle A T Hildebrandt  40 Chad Huff  40 David G Huntsman  41   42 Allan Jensen  43 Siddhartha Kar  44   45 Beth Y Karlan  46 Elza K Khusnutdinova  47   48 Lambertus A Kiemeney  5 Susanne K Kjaer  43   49 Jolanta Kupryjanczyk  50 Marilyne Labrie  51 Diether Lambrechts  52   53 Nhu D Le  54 Jan Lubiński  38 Taymaa May  55 Usha Menon  56 Roger L Milne  33   34   35 Francesmary Modugno  57   58 Alvaro N Monteiro  59 Kirsten B Moysich  60 Kunle Odunsi  61   62 Håkan Olsson  63 Celeste L Pearce  64   65 Tanja Pejovic  53   66 Susan J Ramus  67   68 Elio Riboli  69 Marjorie J Riggan  11 Isabelle Romieu  70 Dale P Sandler  71 Joellen M Schildkraut  72 V Wendy Setiawan  73 Weiva Sieh  74   75 Honglin Song  76 Rebecca Sutphen  77 Kathryn L Terry  30   78 Pamela J Thompson  37 Linda Titus  79 Shelley S Tworoger  59 Els Van Nieuwenhuysen  80 Digna Velez Edwards  81 Penelope M Webb  82 Nicolas Wentzensen  83 Alice S Whittemore  84   85 Alicja Wolk  39   86 Anna H Wu  65 Argyrios Ziogas  7 Matthew L Freedman  87 Kate Lawrenson  88 Paul D P Pharoah  2   3 Douglas F Easton  2   3 Simon A Gayther  1 Michelle R Jones  1
Collaborators, Affiliations

Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci

Amber A DeVries et al. J Natl Cancer Inst. .

Abstract

Background: Known risk alleles for epithelial ovarian cancer (EOC) account for approximately 40% of the heritability for EOC. Copy number variants (CNVs) have not been investigated as EOC risk alleles in a large population cohort.

Methods: Single nucleotide polymorphism array data from 13 071 EOC cases and 17 306 controls of White European ancestry were used to identify CNVs associated with EOC risk using a rare admixture maximum likelihood test for gene burden and a by-probe ratio test. We performed enrichment analysis of CNVs at known EOC risk loci and functional biofeatures in ovarian cancer-related cell types.

Results: We identified statistically significant risk associations with CNVs at known EOC risk genes; BRCA1 (PEOC = 1.60E-21; OREOC = 8.24), RAD51C (Phigh-grade serous ovarian cancer [HGSOC] = 5.5E-4; odds ratio [OR]HGSOC = 5.74 del), and BRCA2 (PHGSOC = 7.0E-4; ORHGSOC = 3.31 deletion). Four suggestive associations (P < .001) were identified for rare CNVs. Risk-associated CNVs were enriched (P < .05) at known EOC risk loci identified by genome-wide association study. Noncoding CNVs were enriched in active promoters and insulators in EOC-related cell types.

Conclusions: CNVs in BRCA1 have been previously reported in smaller studies, but their observed frequency in this large population-based cohort, along with the CNVs observed at BRCA2 and RAD51C gene loci in EOC cases, suggests that these CNVs are potentially pathogenic and may contribute to the spectrum of disease-causing mutations in these genes. CNVs are likely to occur in a wider set of susceptibility regions, with potential implications for clinical genetic testing and disease prevention.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
CNVs identified at the BRCA1, BRCA2, and RAD51C susceptibility gene risk loci in EOC cases and controls. CNVs of varying size predicting deletions (horizontal red bars) and duplications (horizontal blue bars) in EOC cases (solid bars) and controls (faint bars) at the (A)  BRCA1, (B)  BRCA2, and (C)  RAD51C gene loci. The location of all probes genotyped on the Illumina OncoArray and used to “call” copy number variations are shown as vertical blue lines. CNV = copy number variants.
Figure 2.
Figure 2.
A) Manhattan plots showing the results of single-probe CNV association testing. At a Bonferroni P value cutoff (blue line) of P < 8.71E-7 for the all EOC cases (based on 57 432 tests) and P < 8.56E-7 for HGSOC cases only (based on 58 382 tests) identified statistically significant probes at the BRCA1 gene locus. Evidence of several additional risk associations with a Bonferroni P value cutoff of P < 5E-4, including associations at intergenic sites, are also shown. B) Manhattan plot displaying results of common CNV analysis. At a Bonferroni P value cutoff of P < 2.09E-6 based on 23 960 tag SNPs included in the lookup, we identified statistically significant SNPs at 4 loci. At these loci, there are common CNVs in high linkage disequilibrium with GWAS SNPs that may account for some of the variation leading to differences in risk at that SNP. CNV = copy number variants; EOC = epithelial ovarian cancer; GWAS = genome-wide association studies; HGSOC = high-grade serous ovarian cancer; SNP = single nucleotide variants.
Figure 3.
Figure 3.
Enrichment of EOC statistically significant CNVs (P < .05) in functional biofeatures in ovarian cancer–related cell types. EOC risk CNVs are statistically significantly enriched in insulators across all ovarian cancer–relevant histotype consensus groups. The total number of risk CNVs in each biofeature per histotype grouping can be found in Supplementary Table 11 (available online). Abbreviations for histotypes are as follows: CCOC = clear cell ovarian cancer; EEC = endometriosis (precursor cell type); FT = fallopian tube secretory epithelial cells (precursor cell type); HGSOC = high-grade serous ovarian cancer; IOSE = immortalized ovarian surface epithelium (precursor cell type); LGSOC = low-grade serous ovarian cancer; MOC = mucinous ovarian cancer. CNV = copy number variants; EOC = epithelial ovarian cancer.

References

    1. Ramus SJ, Gayther SA. The contribution of BRCA1 and BRCA2 to ovarian cancer. Mol Oncol. 2009;3(2):138-150. doi:10.1016/j.molonc.2009.02.001. - DOI - PMC - PubMed
    1. Ramus SJ, Song H, Dicks E, et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst. 2015;107(11):djv214. doi:10.1093/jnci/djv214. - DOI - PMC - PubMed
    1. Norquist BM, Harrell MI, Brady MF, et al. Inherited mutations in women with ovarian carcinoma. JAMA Oncol. 2016;2(4):482-490. doi:10.1001/jamaoncol.2015.5495. - DOI - PMC - PubMed
    1. Walsh T, Casadei S, Lee MK, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci USA. 2011;108(44):18032-18037. doi:10.1073/pnas.1115052108. - DOI - PMC - PubMed
    1. Rafnar T, Gudbjartsson DF, Sulem P, et al. Mutations in BRIP1 confer high risk of ovarian cancer. Nat Genet. 2011;43(11):1104-1107. doi:10.1038/ng.955. - DOI - PubMed

Publication types

Grants and funding