Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Nov 3;10(42):8575-8595.
doi: 10.1039/d2tb01475k.

Biodegradable bioelectronics for biomedical applications

Affiliations
Review

Biodegradable bioelectronics for biomedical applications

Seunghyeon Lee et al. J Mater Chem B. .

Abstract

Biodegradable polymers have been widely used in tissue engineering with the potential to be replaced by regenerative tissue. While conventional bionic interfaces are designed to be implanted in living tissue and organs permanently, biocompatible and biodegradable electronic materials are now progressing a paradigm shift towards transient and regenerative bionic engineering. For example, biodegradable bioelectronics can monitor physiologies in a body, transiently rehabilitate disease symptoms, and seamlessly form regenerative interfaces from synthetic electronic devices to tissues by reducing inflammatory foreign-body responses. Conventional electronic materials have not readily been considered biodegradable. However, several strategies have been adopted for designing electroactive and biodegradable materials systems: (1) conductive materials blended with biodegradable components, (2) molecularly engineered conjugated polymers with biodegradable moieties, (3) naturally derived conjugated biopolymers, and (4) aqueously dissolvable metals with encapsulating layers. In this review, we endeavor to present the technical bridges from electrically active and biodegradable material systems to edible and biodegradable electronics as well as transient bioelectronics with pre-clinical bio-instrumental applications, including biodegradable sensors, neural and tissue engineering, and intelligent drug delivery systems.

PubMed Disclaimer

Publication types

LinkOut - more resources