Deep learning explains the biology of branched glycans from single-cell sequencing data
- PMID: 36217547
- PMCID: PMC9547197
- DOI: 10.1016/j.isci.2022.105163
Deep learning explains the biology of branched glycans from single-cell sequencing data
Abstract
Glycosylation is ubiquitous and often dysregulated in disease. However, the regulation and functional significance of various types of glycosylation at cellular levels is hard to unravel experimentally. Multi-omics, single-cell measurements such as SUGAR-seq, which quantifies transcriptomes and cell surface glycans, facilitate addressing this issue. Using SUGAR-seq data, we pioneered a deep learning model to predict the glycan phenotypes of cells (mouse T lymphocytes) from transcripts, with the example of predicting β1,6GlcNAc-branching across T cell subtypes (test set F1 score: 0.9351). Model interpretation via SHAP (SHapley Additive exPlanations) identified highly predictive genes, in part known to impact (i) branched glycan levels and (ii) the biology of branched glycans. These genes included physiologically relevant low-abundance genes that were not captured by conventional differential expression analysis. Our work shows that interpretable deep learning models are promising for uncovering novel functions and regulatory mechanisms of glycans from integrated transcriptomic and glycomic datasets.
Keywords: Artificial intelligence; Bioinformatics; Biomolecules.
© 2022 The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures







Similar articles
-
Quantitative analysis of β1,6GlcNAc-branched N-glycans on β4 integrin in cutaneous squamous cell carcinoma.Fukushima J Med Sci. 2020 Dec 10;66(3):119-123. doi: 10.5387/fms.2020-12. Epub 2020 Aug 7. Fukushima J Med Sci. 2020. PMID: 32779579 Free PMC article.
-
Control of T Cell-mediated autoimmunity by metabolite flux to N-glycan biosynthesis.J Biol Chem. 2007 Jul 6;282(27):20027-35. doi: 10.1074/jbc.M701890200. Epub 2007 May 8. J Biol Chem. 2007. PMID: 17488719
-
β4-Integrin/PI3K Signaling Promotes Tumor Progression through the Galectin-3-N-Glycan Complex.Mol Cancer Res. 2018 Jun;16(6):1024-1034. doi: 10.1158/1541-7786.MCR-17-0365. Epub 2018 Mar 16. Mol Cancer Res. 2018. PMID: 29549127
-
Aberrant N-glycosylation in cancer: MGAT5 and β1,6-GlcNAc branched N-glycans as critical regulators of tumor development and progression.Cell Oncol (Dordr). 2023 Jun;46(3):481-501. doi: 10.1007/s13402-023-00770-4. Epub 2023 Jan 23. Cell Oncol (Dordr). 2023. PMID: 36689079 Review.
-
Artificial intelligence in the analysis of glycosylation data.Biotechnol Adv. 2022 Nov;60:108008. doi: 10.1016/j.biotechadv.2022.108008. Epub 2022 Jun 20. Biotechnol Adv. 2022. PMID: 35738510 Free PMC article. Review.
Cited by
-
Designing interpretable deep learning applications for functional genomics: a quantitative analysis.Brief Bioinform. 2024 Jul 25;25(5):bbae449. doi: 10.1093/bib/bbae449. Brief Bioinform. 2024. PMID: 39293804 Free PMC article. Review.
-
Emerging technologies for single-cell glycomics.BBA Adv. 2024 Nov 26;6:100125. doi: 10.1016/j.bbadva.2024.100125. eCollection 2024. BBA Adv. 2024. PMID: 39687516 Free PMC article.
-
Glycan Shape, Motions, and Interactions Explored by NMR Spectroscopy.JACS Au. 2024 Jan 3;4(1):20-39. doi: 10.1021/jacsau.3c00639. eCollection 2024 Jan 22. JACS Au. 2024. PMID: 38274261 Free PMC article. Review.
-
Leveraging explainable deep learning methodologies to elucidate the biological underpinnings of Huntington's disease using single-cell RNA sequencing data.BMC Genomics. 2024 Oct 4;25(1):930. doi: 10.1186/s12864-024-10855-5. BMC Genomics. 2024. PMID: 39367331 Free PMC article.
-
Interpretable feature extraction and dimensionality reduction in ESM2 for protein localization prediction.Brief Bioinform. 2024 Jan 22;25(2):bbad534. doi: 10.1093/bib/bbad534. Brief Bioinform. 2024. PMID: 38279650 Free PMC article.
References
-
- Agrawal P., Kurcon T., Pilobello K.T., Rakus J.F., Koppolu S., Liu Z., Batista B.S., Eng W.S., Hsu K.L., Liang Y., et al. Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. Proc. Natl. Acad. Sci. USA. 2014;111:4338–4343. doi: 10.1073/pnas.1321524111. - DOI - PMC - PubMed
-
- Agrawal P., Fontanals-Cirera B., Sokolova E., Jacob S., Vaiana C.A., Argibay D., Davalos V., McDermott M., Nayak S., Darvishian F., et al. A systems biology approach identifies FUT8 as a driver of melanoma metastasis. Cancer Cell. 2017;31:804–819.e7. doi: 10.1016/j.ccell.2017.05.007. - DOI - PMC - PubMed
-
- Alatrash G., Qiao N., Zhang M., Zope M., Perakis A.A., Sukhumalchandra P., Philips A.V., Garber H.R., Kerros C., St John L.S., et al. Fucosylation enhances the efficacy of adoptively transferred antigen-specific cytotoxic T lymphocytes. Clin. Cancer Res. 2019;25:2610–2620. doi: 10.1158/1078-0432.CCR-18-1527. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources