Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 22;16(11):18579-18591.
doi: 10.1021/acsnano.2c07027. Epub 2022 Oct 12.

Caffeic Acid Modified Nanomicelles Inhibit Articular Cartilage Deterioration and Reduce Disease Severity in Experimental Inflammatory Arthritis

Affiliations

Caffeic Acid Modified Nanomicelles Inhibit Articular Cartilage Deterioration and Reduce Disease Severity in Experimental Inflammatory Arthritis

Akshay Vyawahare et al. ACS Nano. .

Abstract

Inflammation plays an important role in the development of rheumatoid arthritis (RA). NR4A1 is an anti-inflammatory orphan nuclear receptor involved in protection from inflammatory stimuli in RA. In this study we have explored the anti-inflammatory potential of the FDA-approved drug 9-aminoacridine (9AA) and the natural compound caffeic acid (CA) conjugated to nanomicelles for the treatment of RA. We have synthesized methoxy polyethylene glycol polycaprolactone block copolymer (mPEG-b-PCL) by ring opening polymerization of ε-caprolactone. Then, we conjugated the hydrophilic caffeic acid (CA) with mPEG-b-PCL micelles via Steglich esterification and incorporated the 9AA drug. These nanomicelles were formulated by the solvent evaporation method with a size distribution around 190 nm and showed maximum drug loading capacity along with sustained drug release behavior. Furthermore, we tested the therapeutic potential of the formulated 9AA-encapsulated CA-conjugated nanomicelles (9AA-NMs) against an experimental RA model. We observed promising results which showed alleviation of arthritic symptoms by reducing inflammation, joint damage, bone erosion, and swelling. Further, collagen destruction was significantly reduced in articular cartilage, as shown by safranin-O and toluidine blue staining. The protective mechanism might be due to the simultaneous inhibition of NF-κB by 9AA and CA, whereas the activation of NR4A1 by 9AA leads to the suppression of HIF-1α. This combined therapeutic effect of 9AA and CA has enhanced the therapeutic efficacy of 9AA-NM and markedly reduced the severity of inflammatory arthritis. Unlike existing drugs for pain management and with limited efficacy, 9AA-NM exerted a disease-relevant activation/blockade that alleviated inflammation and exhibited marked therapeutic efficacy against RA.

Keywords: 9-aminoacridine; articular cartilage; inflammation; nanomicelles; rheumatoid arthritis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources