Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Sep;121(3):1070-5.
doi: 10.1210/endo-121-3-1070.

Growth hormone in vivo potentiates the stimulatory effect of insulin-like growth factor-1 in vitro on colony formation of epiphyseal chondrocytes isolated from hypophysectomized rats

Growth hormone in vivo potentiates the stimulatory effect of insulin-like growth factor-1 in vitro on colony formation of epiphyseal chondrocytes isolated from hypophysectomized rats

A Lindahl et al. Endocrinology. 1987 Sep.

Abstract

The effect of GH pretreatment in vivo on the colony formation of epiphyseal chondrocytes from hypophysectomized rats and the subsequent responsiveness to insulin-like growth factor (IGF-I) was studied in vitro. Chondrocytes from epiphyseal growth plates of the proximal tibia of 36-day-old hypophysectomized rats were enzymatically isolated and cultured in suspension, stabilized with agarose (0.5%) in Ham's F-12 medium and serum supplement. After 14 days the cultures were terminated and screened for cloning efficiency (number of colonies with a diameter greater than 56 microns/1000 seeded cells) and for distribution of cloning efficiency as a function of colony size. Pretreatment with human GH in vivo for 24 h (10 micrograms X 3) increased the cloning efficiency during the subsequent culture period (control, 1.5 +/- 0.1; human GH, 4.4 +/- 0.3). Addition of IGF-I to the chondrocyte cultures from control rats caused a slight increase in cloning efficiency (control, 1.5 +/- 0.1; IGF-I, 2.2 +/- 0.3) but caused a marked increase in chondrocyte cultures from GH-pretreated rats (control, 4.4 +/- 0.4; IGF-I, 8.2 +/- 0.9). The cloning efficiency was increased 12 and 24 h, but not 4 h, after start of GH-treatment in vivo. The increased responsiveness to IGF-I in vivo showed a similar time course after GH pretreatment. The distribution of cloning efficiency was altered in cultures of chondrocytes isolated from the GH-pretreated rats; large colonies were overrepresented in the GH-treated group. Colonies with a diameter exceeding 180 microns were only seen in cultures of chondrocytes isolated from the GH-pretreated animals. Addition of IGF-I in vitro did not alter the distribution of cloning efficiency, but increased the mean colony size of all colonies. Pretreatment of the rats with two different doses of IGF-I in vivo for 24 h (5 micrograms X 3 or 50 micrograms X 3) had a slight stimulatory effect on subsequent colony formation, but no potentiation of IGF-I in vitro was demonstrated. The results of the present study show that pretreatment of hypophysectomized rats with GH, but not with IGF-I, promotes the formation of chondrocyte colonies and make the chondrocytes susceptible to IGF-I in vitro. The results suggest that GH induces colony formation by IGF-I-independent mechanisms and that IGF-I is a second effector in GH action as previously shown for cultured 3T3-preadipose cells.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources