Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct;610(7933):704-712.
doi: 10.1038/s41586-022-05275-y. Epub 2022 Oct 12.

A saturated map of common genetic variants associated with human height

Loïc Yengo #  1 Sailaja Vedantam #  2   3 Eirini Marouli #  4 Julia Sidorenko  5 Eric Bartell  2   3   6 Saori Sakaue  3   7   8   9 Marielisa Graff  10 Anders U Eliasen  11   12 Yunxuan Jiang  13 Sridharan Raghavan  14   15 Jenkai Miao  2   3 Joshua D Arias  16 Sarah E Graham  17 Ronen E Mukamel  3   18   19 Cassandra N Spracklen  20   21 Xianyong Yin  22 Shyh-Huei Chen  23 Teresa Ferreira  24 Heather H Highland  10 Yingjie Ji  25 Tugce Karaderi  26   27 Kuang Lin  28 Kreete Lüll  29 Deborah E Malden  28 Carolina Medina-Gomez  30 Moara Machado  16 Amy Moore  31 Sina Rüeger  32   33 Xueling Sim  34 Scott Vrieze  35 Tarunveer S Ahluwalia  36   37 Masato Akiyama  7   38 Matthew A Allison  39 Marcus Alvarez  40 Mette K Andersen  41 Alireza Ani  42   43 Vivek Appadurai  44 Liubov Arbeeva  45 Seema Bhaskar  46 Lawrence F Bielak  47 Sailalitha Bollepalli  48 Lori L Bonnycastle  49 Jette Bork-Jensen  41 Jonathan P Bradfield  50   51 Yuki Bradford  52 Peter S Braund  53   54 Jennifer A Brody  55 Kristoffer S Burgdorf  56   57 Brian E Cade  6   58 Hui Cai  59 Qiuyin Cai  59 Archie Campbell  60 Marisa Cañadas-Garre  61 Eulalia Catamo  62 Jin-Fang Chai  34 Xiaoran Chai  63   64 Li-Ching Chang  65 Yi-Cheng Chang  65   66   67 Chien-Hsiun Chen  65 Alessandra Chesi  68   69 Seung Hoan Choi  70 Ren-Hua Chung  71 Massimiliano Cocca  62 Maria Pina Concas  62 Christian Couture  72 Gabriel Cuellar-Partida  13   73 Rebecca Danning  74 E Warwick Daw  75 Frauke Degenhard  76 Graciela E Delgado  77 Alessandro Delitala  78 Ayse Demirkan  79   80 Xuan Deng  81 Poornima Devineni  82 Alexander Dietl  83   84 Maria Dimitriou  85 Latchezar Dimitrov  86 Rajkumar Dorajoo  87   88 Arif B Ekici  89 Jorgen E Engmann  90 Zammy Fairhurst-Hunter  28 Aliki-Eleni Farmaki  85 Jessica D Faul  91 Juan-Carlos Fernandez-Lopez  92 Lukas Forer  93 Margherita Francescatto  94 Sandra Freitag-Wolf  95 Christian Fuchsberger  96 Tessel E Galesloot  97 Yan Gao  98 Zishan Gao  99   100   101 Frank Geller  102 Olga Giannakopoulou  4 Franco Giulianini  74 Anette P Gjesing  41 Anuj Goel  27   103 Scott D Gordon  104 Mathias Gorski  83 Jakob Grove  105   106   107 Xiuqing Guo  108 Stefan Gustafsson  109 Jeffrey Haessler  110 Thomas F Hansen  44   57   111 Aki S Havulinna  48   112 Simon J Haworth  113   114 Jing He  59 Nancy Heard-Costa  115   116 Prashantha Hebbar  117 George Hindy  3   118 Yuk-Lam A Ho  119 Edith Hofer  120   121 Elizabeth Holliday  122 Katrin Horn  123   124 Whitney E Hornsby  17 Jouke-Jan Hottenga  125 Hongyan Huang  126 Jie Huang  127   128 Alicia Huerta-Chagoya  129   130   131 Jennifer E Huffman  119 Yi-Jen Hung  132 Shaofeng Huo  133 Mi Yeong Hwang  134 Hiroyuki Iha  135 Daisuke D Ikeda  135 Masato Isono  136 Anne U Jackson  22 Susanne Jäger  137   138 Iris E Jansen  139   140 Ingegerd Johansson  141   142 Jost B Jonas  143   144   145   146 Anna Jonsson  41 Torben Jørgensen  147   148 Ioanna-Panagiota Kalafati  85 Masahiro Kanai  3   7   8 Stavroula Kanoni  4 Line L Kårhus  147 Anuradhani Kasturiratne  149 Tomohiro Katsuya  150 Takahisa Kawaguchi  151 Rachel L Kember  152 Katherine A Kentistou  153   154 Han-Na Kim  155   156 Young Jin Kim  134 Marcus E Kleber  77   157 Maria J Knol  79 Azra Kurbasic  158 Marie Lauzon  108 Phuong Le  159   160 Rodney Lea  161 Jong-Young Lee  162 Hampton L Leonard  163   164   165 Shengchao A Li  16   166 Xiaohui Li  108 Xiaoyin Li  167   168 Jingjing Liang  167 Honghuang Lin  169 Shih-Yi Lin  170 Jun Liu  28   79 Xueping Liu  102 Ken Sin Lo  171 Jirong Long  59 Laura Lores-Motta  172 Jian'an Luan  173 Valeriya Lyssenko  174   175 Leo-Pekka Lyytikäinen  176   177   178 Anubha Mahajan  27   179 Vasiliki Mamakou  180 Massimo Mangino  181   182 Ani Manichaikul  183 Jonathan Marten  184 Manuel Mattheisen  105   185   186 Laven Mavarani  187 Aaron F McDaid  32   33 Karina Meidtner  137   138 Tori L Melendez  17 Josep M Mercader  19   129   188   189 Yuri Milaneschi  190 Jason E Miller  191   192 Iona Y Millwood  28   193 Pashupati P Mishra  176   177 Ruth E Mitchell  113   194 Line T Møllehave  147 Anna Morgan  62 Soeren Mucha  195 Matthias Munz  195 Masahiro Nakatochi  196 Christopher P Nelson  53   54 Maria Nethander  197   198 Chu Won Nho  199 Aneta A Nielsen  200 Ilja M Nolte  42 Suraj S Nongmaithem  46   201 Raymond Noordam  202 Ioanna Ntalla  4 Teresa Nutile  203 Anita Pandit  22 Paraskevi Christofidou  181 Katri Pärna  29   42 Marc Pauper  172 Eva R B Petersen  204 Liselotte V Petersen  106   205 Niina Pitkänen  206   207 Ozren Polašek  208   209 Alaitz Poveda  158 Michael H Preuss  210   211 Saiju Pyarajan  6   58   82 Laura M Raffield  20 Hiromi Rakugi  150 Julia Ramirez  4   212   213 Asif Rasheed  214 Dennis Raven  215 Nigel W Rayner  27   201   216   217 Carlos Riveros  218   219 Rebecca Rohde  10 Daniela Ruggiero  203   220 Sanni E Ruotsalainen  48 Kathleen A Ryan  221   222 Maria Sabater-Lleal  223   224 Richa Saxena  3   189 Markus Scholz  123   124 Anoop Sendamarai  82 Botong Shen  225 Jingchunzi Shi  13 Jae Hun Shin  226 Carlo Sidore  227 Colleen M Sitlani  55 Roderick C Slieker  228   229   230 Roelof A J Smit  210   231 Albert V Smith  47   232 Jennifer A Smith  47   91 Laura J Smyth  61 Lorraine Southam  216   233 Valgerdur Steinthorsdottir  234 Liang Sun  133 Fumihiko Takeuchi  136 Divya Sri Priyanka Tallapragada  46   235 Kent D Taylor  108 Bamidele O Tayo  236 Catherine Tcheandjieu  237   238 Natalie Terzikhan  79 Paola Tesolin  94 Alexander Teumer  239   240 Elizabeth Theusch  241 Deborah J Thompson  242   243 Gudmar Thorleifsson  234 Paul R H J Timmers  153   184 Stella Trompet  202   244 Constance Turman  126 Simona Vaccargiu  227 Sander W van der Laan  245 Peter J van der Most  42 Jan B van Klinken  246   247   248 Jessica van Setten  249 Shefali S Verma  68 Niek Verweij  250 Yogasudha Veturi  52 Carol A Wang  218   219 Chaolong Wang  87   251 Lihua Wang  75 Zhe Wang  210 Helen R Warren  4   252 Wen Bin Wei  253 Ananda R Wickremasinghe  149 Matthias Wielscher  254   255 Kerri L Wiggins  55 Bendik S Winsvold  256   257 Andrew Wong  258 Yang Wu  5 Matthias Wuttke  259   260 Rui Xia  261 Tian Xie  42 Ken Yamamoto  262 Jingyun Yang  263   264 Jie Yao  108 Hannah Young  35 Noha A Yousri  265   266 Lei Yu  263   264 Lingyao Zeng  267 Weihua Zhang  268   269 Xinyuan Zhang  52 Jing-Hua Zhao  270 Wei Zhao  47 Wei Zhou  3   271   272   273 Martina E Zimmermann  83 Magdalena Zoledziewska  227 Linda S Adair  274   275 Hieab H H Adams  276   277   278 Carlos A Aguilar-Salinas  279   280 Fahd Al-Mulla  117 Donna K Arnett  281 Folkert W Asselbergs  249   282   283 Bjørn Olav Åsvold  284   285   286 John Attia  122 Bernhard Banas  287 Stefania Bandinelli  288 David A Bennett  263   264 Tobias Bergler  287 Dwaipayan Bharadwaj  289 Ginevra Biino  290 Hans Bisgaard  11 Eric Boerwinkle  291 Carsten A Böger  287   292   293 Klaus Bønnelykke  11 Dorret I Boomsma  125 Anders D Børglum  105   106   294   295 Judith B Borja  296   297 Claude Bouchard  298 Donald W Bowden  86   299 Ivan Brandslund  300   301 Ben Brumpton  284   302 Julie E Buring  6   74 Mark J Caulfield  4   252 John C Chambers  268   269   303   304 Giriraj R Chandak  46   305 Stephen J Chanock  16 Nish Chaturvedi  258 Yii-Der Ida Chen  108 Zhengming Chen  28   193 Ching-Yu Cheng  63   306 Ingrid E Christophersen  307   308 Marina Ciullo  203   220 John W Cole  309   310 Francis S Collins  49 Richard S Cooper  236 Miguel Cruz  311 Francesco Cucca  227   312 L Adrienne Cupples  81   116 Michael J Cutler  313 Scott M Damrauer  52   314   315 Thomas M Dantoft  147 Gert J de Borst  316 Lisette C P G M de Groot  317 Philip L De Jager  3   318 Dominique P V de Kleijn  316 H Janaka de Silva  149 George V Dedoussis  85 Anneke I den Hollander  172 Shufa Du  274   275 Douglas F Easton  242   319 Petra J M Elders  320 A Heather Eliassen  58   126   321 Patrick T Ellinor  70   322   323 Sölve Elmståhl  324 Jeanette Erdmann  195 Michele K Evans  225 Diane Fatkin  325   326   327 Bjarke Feenstra  102 Mary F Feitosa  75 Luigi Ferrucci  328 Ian Ford  329 Myriam Fornage  261   330 Andre Franke  76 Paul W Franks  158   321   331 Barry I Freedman  332 Paolo Gasparini  62   94 Christian Gieger  100   138 Giorgia Girotto  62   94 Michael E Goddard  333   334 Yvonne M Golightly  10   45   335   336 Clicerio Gonzalez-Villalpando  337 Penny Gordon-Larsen  274   275 Harald Grallert  100   138 Struan F A Grant  50   338   339   340 Niels Grarup  41 Lyn Griffiths  161 Vilmundur Gudnason  232   341 Christopher Haiman  342 Hakon Hakonarson  50   338   343   344 Torben Hansen  41 Catharina A Hartman  215 Andrew T Hattersley  345 Caroline Hayward  184 Susan R Heckbert  346 Chew-Kiat Heng  347   348 Christian Hengstenberg  349 Alex W Hewitt  350   351   352 Haretsugu Hishigaki  135 Carel B Hoyng  172 Paul L Huang  6   323   353 Wei Huang  354 Steven C Hunt  265   355 Kristian Hveem  284   285 Elina Hyppönen  356   357 William G Iacono  35 Sahoko Ichihara  358 M Arfan Ikram  79 Carmen R Isasi  359 Rebecca D Jackson  360 Marjo-Riitta Jarvelin  254   361   362   363 Zi-Bing Jin  146   364 Karl-Heinz Jöckel  187 Peter K Joshi  154 Pekka Jousilahti  112 J Wouter Jukema  244   365   366 Mika Kähönen  367   368 Yoichiro Kamatani  7   369 Kui Dong Kang  370 Jaakko Kaprio  48 Sharon L R Kardia  47 Fredrik Karpe  217   371 Norihiro Kato  136 Frank Kee  61 Thorsten Kessler  267   372 Amit V Khera  3   189 Chiea Chuen Khor  87 Lambertus A L M Kiemeney  97   373 Bong-Jo Kim  134 Eung Kweon Kim  374   375 Hyung-Lae Kim  376 Paulus Kirchhof  377   378   379   380 Mika Kivimaki  381 Woon-Puay Koh  382 Heikki A Koistinen  112   383   384 Genovefa D Kolovou  385 Jaspal S Kooner  268   304   386   387 Charles Kooperberg  110 Anna Köttgen  259 Peter Kovacs  388 Adriaan Kraaijeveld  249 Peter Kraft  126 Ronald M Krauss  241 Meena Kumari  389 Zoltan Kutalik  32   33 Markku Laakso  390 Leslie A Lange  391 Claudia Langenberg  173   392 Lenore J Launer  225 Loic Le Marchand  393 Hyejin Lee  394 Nanette R Lee  296 Terho Lehtimäki  176   177 Huaixing Li  133 Liming Li  395   396 Wolfgang Lieb  397 Xu Lin  133   398 Lars Lind  109 Allan Linneberg  147   399 Ching-Ti Liu  81 Jianjun Liu  87 Markus Loeffler  123   124 Barry London  400 Steven A Lubitz  70   322   323 Stephen J Lye  401 David A Mackey  350   352 Reedik Mägi  29 Patrik K E Magnusson  402 Gregory M Marcus  403 Pedro Marques Vidal  404   405 Nicholas G Martin  104 Winfried März  77   406   407 Fumihiko Matsuda  151 Robert W McGarrah  408   409 Matt McGue  35 Amy Jayne McKnight  61 Sarah E Medland  410 Dan Mellström  197   411 Andres Metspalu  29 Braxton D Mitchell  221   222   412 Paul Mitchell  413 Dennis O Mook-Kanamori  231   414 Andrew D Morris  415 Lorelei A Mucci  126 Patricia B Munroe  4   252 Mike A Nalls  163   164   165 Saman Nazarian  416 Amanda E Nelson  45   417 Matt J Neville  217   371 Christopher Newton-Cheh  189   323 Christopher S Nielsen  418   419 Markus M Nöthen  420 Claes Ohlsson  197   421 Albertine J Oldehinkel  215 Lorena Orozco  422 Katja Pahkala  206   207   423 Päivi Pajukanta  40   424 Colin N A Palmer  425 Esteban J Parra  160 Cristian Pattaro  96 Oluf Pedersen  41 Craig E Pennell  218   219 Brenda W J H Penninx  190 Louis Perusse  72   426 Annette Peters  101   138   427 Patricia A Peyser  47 David J Porteous  60 Danielle Posthuma  139 Chris Power  428 Peter P Pramstaller  96 Michael A Province  75 Qibin Qi  359 Jia Qu  364 Daniel J Rader  52   429 Olli T Raitakari  206   207   430 Sarju Ralhan  431 Loukianos S Rallidis  432 Dabeeru C Rao  433 Susan Redline  6   58 Dermot F Reilly  434 Alexander P Reiner  110   435 Sang Youl Rhee  436 Paul M Ridker  6   74 Michiel Rienstra  250 Samuli Ripatti  3   48   437 Marylyn D Ritchie  52 Dan M Roden  438 Frits R Rosendaal  231 Jerome I Rotter  108 Igor Rudan  153 Femke Rutters  439 Charumathi Sabanayagam  63   306 Danish Saleheen  214   440 Veikko Salomaa  112 Nilesh J Samani  53   54 Dharambir K Sanghera  441   442   443   444 Naveed Sattar  445 Börge Schmidt  187 Helena Schmidt  446 Reinhold Schmidt  120 Matthias B Schulze  137   138   447 Heribert Schunkert  448 Laura J Scott  22 Rodney J Scott  449 Peter Sever  387 Eric J Shiroma  225 M Benjamin Shoemaker  450 Xiao-Ou Shu  59 Eleanor M Simonsick  328 Mario Sims  98 Jai Rup Singh  451 Andrew B Singleton  163 Moritz F Sinner  372   452 J Gustav Smith  453   454   455 Harold Snieder  42 Tim D Spector  181 Meir J Stampfer  58   126   321 Klaus J Stark  83 David P Strachan  456 Leen M 't Hart  228   229   230   457 Yasuharu Tabara  151 Hua Tang  458 Jean-Claude Tardif  171   459 Thangavel A Thanaraj  117 Nicholas J Timpson  113   194 Anke Tönjes  388 Angelo Tremblay  72   426 Tiinamaija Tuomi  48   175   460   461 Jaakko Tuomilehto  112   462   463 Maria-Teresa Tusié-Luna  464   465 Andre G Uitterlinden  30 Rob M van Dam  34   466   467 Pim van der Harst  249   250 Nathalie Van der Velde  30   468 Cornelia M van Duijn  28   79 Natasja M van Schoor  469 Veronique Vitart  184 Uwe Völker  240   470 Peter Vollenweider  404   405 Henry Völzke  239   240 Niels H Wacher-Rodarte  471 Mark Walker  472 Ya Xing Wang  146 Nicholas J Wareham  173 Richard M Watanabe  473   474   475 Hugh Watkins  27   103 David R Weir  91 Thomas M Werge  44   399   476 Elisabeth Widen  48 Lynne R Wilkens  393 Gonneke Willemsen  125 Walter C Willett  126   321 James F Wilson  153   184 Tien-Yin Wong  63   306 Jeong-Taek Woo  436 Alan F Wright  184 Jer-Yuarn Wu  65   477 Huichun Xu  221   222 Chittaranjan S Yajnik  478 Mitsuhiro Yokota  479 Jian-Min Yuan  480   481 Eleftheria Zeggini  216   233   482 Babette S Zemel  52   69   340   343 Wei Zheng  59 Xiaofeng Zhu  167 Joseph M Zmuda  481 Alan B Zonderman  225 John-Anker Zwart  256   483 23andMe Research TeamVA Million Veteran ProgramDiscovEHR (DiscovEHR and MyCode Community Health Initiative)eMERGE (Electronic Medical Records and Genomics Network)Lifelines Cohort StudyPRACTICAL ConsortiumUnderstanding Society Scientific GroupDaniel I Chasman  6   74 Yoon Shin Cho  226 Iris M Heid  83 Mark I McCarthy  27   217   484 Maggie C Y Ng  86   485 Christopher J O'Donnell  6   58   486 Fernando Rivadeneira  30 Unnur Thorsteinsdottir  234   341 Yan V Sun  487   488 E Shyong Tai  34   466 Michael Boehnke  22 Panos Deloukas  4   489 Anne E Justice  10   490 Cecilia M Lindgren  3   24   27 Ruth J F Loos  41   210   211   491 Karen L Mohlke  20 Kari E North  10 Kari Stefansson  234   341 Robin G Walters  28   193 Thomas W Winkler  83 Kristin L Young  10 Po-Ru Loh  3   18   19 Jian Yang  5   492   493 Tõnu Esko  29 Themistocles L Assimes  237   238 Adam Auton  13 Goncalo R Abecasis  22 Cristen J Willer  17   271   494 Adam E Locke  495 Sonja I Berndt  16 Guillaume Lettre  171   459 Timothy M Frayling  25 Yukinori Okada  496   497   498   499   500   501 Andrew R Wood  502 Peter M Visscher  503 Joel N Hirschhorn  504   505   506
Collaborators, Affiliations

A saturated map of common genetic variants associated with human height

Loïc Yengo et al. Nature. 2022 Oct.

Abstract

Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.

PubMed Disclaimer

Conflict of interest statement

Y. Jiang is employed by and holds stock or stock options in 23andMe. T.S.A. is a shareholder in Zealand Pharma A/S and Novo Nordisk A/S. G.C.-P. is an employee of 23andMe. M.E.K. is employed by SYNLAB Holding Deutschland GmbH. H.L.L. receives support from a consulting contract between Data Tecnica International and the National Institute on Aging (NIA), National Institutes of Health (NIH). As of January 2020, A. Mahajan is an employee of Genentech, and a holder of Roche stock. I.N. is an employee and stock owner of Gilead Sciences; this work was conducted before employment by Gilead Sciences. J. Shi is employed by and holds stock or stock options in 23andMe. C. Sidore is an employee of Regeneron. V. Steinthorsdottir is employed by deCODE Genetics/Amgen. Since completing the work contributed to this paper, D.J.T. has left the University of Cambridge and is now employed by Genomics PLC. G.T. is employed by deCODE Genetics/Amgen. S.W.v.d.L. has received Roche funding for unrelated work. H.B. has consultant arrangements with Chiesi Pharmaceuticals and Boehringer Ingelheim. M. J. Caulfield is Chief Scientist for Genomics England, a UK Government company. M. J. Cutler has served on the advisory board or consulted for Biosense Webster, Janssen Scientific Affairs and Johnson & Johnson. S.M.D. receives research support from RenalytixAI and personal consulting fees from Calico Labs, outside the scope of the current research. P.T.E. receives sponsored research support from Bayer AG and IBM Health, and he has served on advisory boards or consulted for Bayer AG, Quest Diagnostics, MyoKardia and Novartis. P. Kirchhof has received support from several drug and device companies active in atrial fibrillation, and has received honoraria from several such companies in the past, but not in the last three years. P. Kirchhof is listed as inventor on two patents held by University of Birmingham (Atrial Fibrillation Therapy WO 2015140571, Markers for Atrial Fibrillation WO 2016012783). G.D.K. has given talks, attended conferences and participated in trials sponsored by Amgen, MSD, Lilly, Vianex and Sanofi, and has also accepted travel support to conferences from Amgen, Sanofi, MSD and Elpen. S. A. Lubitz previously received sponsored research support from Bristol Myers Squibb, Pfizer, Bayer AG, Boehringer Ingelheim, Fitbit and IBM, and has consulted for Bristol Myers Squibb, Pfizer, Bayer AG and Blackstone Life Sciences. S. A. Lubitz is a current employee of Novartis Institute of Biomedical Research. W.M. reports grants and personal fees from AMGEN, BASF, Sanofi, Siemens Diagnostics, Aegerion Pharmaceuticals, Astrazeneca, Danone Research, Numares, Pfizer and Hoffmann LaRoche; personal fees from MSD and Alexion; and grants from Abbott Diagnostics, all outside the submitted work. W.M. is employed with Synlab Holding Deutschland. M.A.N. receives support from a consulting contract between Data Tecnica International and the National Institute on Aging (NIA), National Institutes of Health (NIH). S.N. is a scientific advisor to Circle software, ADAS software, CardioSolv and ImriCor and receives grant support from Biosense Webster, ADAS software and ImriCor. H. Schunkert has received honoraria for consulting from AstraZeneca, MSD, Merck, Daiichi, Servier, Amgen and Takeda Pharma. He has further received honoraria for lectures and/or chairs from AstraZeneca, BayerVital, BRAHMS, Daiichi, Medtronic, Novartis, Sanofi and Servier. P.S. has received research awards from Pfizer. The members of the 23andMe Research Team are employed by and hold stock or stock options in 23andMe. The views expressed in this article are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. M. I. McCarthy has served on advisory panels for Pfizer, Novo Nordisk and Zoe Global, and has received honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly and research funding from Abbvie, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, Novo Nordisk, Pfizer, Roche, Sanofi Aventis, Servier and Takeda. As of June 2019, M. I. McCarthy is an employee of Genentech, and a holder of Roche stock. C.J.O. is a current employee of Novartis Institute of Biomedical Research. U.T. is employed by deCODE Genetics (Amgen). K.S. is employed by deCODE Genetics (Amgen). A. Auton is employed by and holds stock or stock options in 23andMe. G.R.A. is an employee of Regeneron Pharmaceuticals and owns stock and stock options for Regeneron Pharmaceuticals. C.J.W.'s spouse is employed by Regeneron. A.E.L. is currently employed by and holds stock in Regeneron Pharmaceuticals. J.N.H. holds equity in Camp4 Therapeutics. The remaining authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Relationship between frequency and estimated effect sizes of minor alleles.
Each dot represents one of the 12,111 quasi-independent GWS SNPs that were identified in our cross-ancestry GWAS meta-analysis. Data underlying this figure are available in Supplementary Table 10. SNP effect estimates (y axis) are expressed in height standard deviation (s.d.) per minor allele as defined in our cross-ancestry GWAS meta-analysis. SNPs were stratified in five classes according to their P value (P) of association. We show two curves representing the theoretical relationship between frequency and expected magnitude of SNP effect detectable at P < 5 × 10−8 with a statistical power of 90%. Statistical power was assessed under two experimental designs with sample sizes equal to n = 0.5 million and n = 5 million. Source data
Fig. 2
Fig. 2. Brisbane plot showing the genomic density of independent genetic associations with height.
Each dot represents one of the 12,111 quasi-independent GWS (P < 5 × 10−8) height-associated SNPs identified using approximate COJO analyses of our cross-ancestry GWAS meta-analysis. Data underlying this figure are available in Supplementary Table 10. GWS SNPs with the largest density on each chromosome were annotated with the closest gene. We highlight 24 of 12,111 associations that are mainly contributed by groups of non-European ancestry (3 from African ancestries, 10 from Hispanic ethnicities or ancestries and 11 from East Asian ancestries). The full list of height-associated SNPs detected in groups of non-European ancestry and independent of associations detected in European ancestry GWASs is reported in Supplementary Table 9. Signal density was calculated for each associated SNP as the number of other independent associations within 100 kb. A density of 1 means that a GWS COJO SNP shares its location with another independent GWS COJO SNP within less than 100 kb. The mean signal density across the genome is 2 and the median signal density is 1 (s.e. 0.14 and 0.0, respectively). The s.e. values were calculated using a leave-one-chromosome-out jackknife approach (LOCO-S.E.). SNPs that did not reach genome-wide significance  are not represented on the figure. Source data
Fig. 3
Fig. 3. Variance of height explained by HM3 SNPs within GWS loci.
a, Stratified SNP-based heritability (hSNP2) estimates obtained after partitioning the genome into SNPs within 35 kb of a GWS SNP ('GWS loci' label) versus SNPs that are more than 35 kb away from any GWS SNP. Analyses were performed in samples of five different ancestries or ethnic groups: European (EUR: meta-analysis of UK Biobank (UKB) + Lifelines study), African (AFR: meta-analysis of UKB + PAGE study), East Asian (EAS: meta-analysis of UKB + China Kadoorie Biobank), South Asian (SAS: UKB) and Hispanic (HIS: PAGE). Error bars represent standard errors. b, More than 90% of hSNP2 in all ancestries is explained by SNPs within GWS loci identified in this study. The cumulative length of non-overlapping GWS loci is around 647 Mb; that is, around 21% of the genome, assuming a genome length of around 3,039 Mb (ref. ). The proportion of HM3 SNPs in GWS loci is around 27%. Source data
Fig. 4
Fig. 4. Accuracy of PGSs within families and across ancestries.
Prediction accuracy (R2) was measured as the squared correlation between PGS and actual height adjusted for age, sex and 10 genetic principal components. a, Accuracy of PGSs assessed in participants of five different ancestry groups: European (EUR) from the UKB (n = 14,587) and the Lifelines Biobank (n = 14,058); South Asian (SAS; n = 9,257) from UKB; East Asian (EAS; n = 2,246) from UKB; Hispanic (HIS; n = 5,798) from the PAGE study; and admixed African (AFR) from UKB (n = 6,911) and PAGE (n = 8,238). PGSs used for prediction, in a, are based on GWS SNPs or around 1.1 million HM3 SNPs. When using all HapMap 3 SNPs, SNP effects were calculated using the SBayesC method (Methods), whereas PGSs based on GWS SNPs used joint SNP effects estimated using the COJO method (Methods). Both SBayesC and COJO were applied to (1) our cross-ancestry meta-analysis (turquoise bar); (2) our EUR meta-analysis (yellow bar); and (3) each ancestry-specific meta-analysis (red bar). b, Squared correlation of height between EUR participants in UKB and their first-degree relatives, and the accuracy of a predictor combining PGS (denoted PGSGWS, as based on GWS SNPs) and familial information. The accuracies of PGSGWS and PGSHM3 shown in b are the average of the respective accuracies of these PGSs in EUR participants from UKB and the Lifelines Biobank as shown in a. Sibling correlation was calculated in 17,492 independent EUR sibling pairs from the UKB and parent–offspring correlations in 981 EUR unrelated trios (that is, two parents and one child) from the UKB. PA, parental average. Source data
Extended Data Fig. 1
Extended Data Fig. 1. Broad ancestries composition.
Geographical mapping and ancestries composition of 281 studies meta-analysed in this study. Various analyses were performed including (1) dectection of height-associated SNPs (Genetic discoveries box), (2) quantification of the genomic distribution of height-associated loci (Genomic distribution box), (3) assessement of the performances of polygenic predictors of height (Polygenic prediction box), and (4) assessment of the relationship between GWAS sample size and discoveries (Saturation of discovery from GWAS box).
Extended Data Fig. 2
Extended Data Fig. 2. Colocalization of height-associated signals across ancestries.
Proportion (y-axis) of GWS SNPs identified in our GWAS meta-analyses of non-European (non-EUR: African – AFR; East Asian – EAS; South Asian – SAS; Hispanic – HIS) ancestry/ethnicity participants thar are located within a certain distance (x-axis) of GWS SNPs identified in our GWAS meta-analysis of EUR participants only. Source data
Extended Data Fig. 3
Extended Data Fig. 3. Replication of marginal associations in the EBB.
a, Each dot represents one the 12,111 SNPs detected in our trans-ancestry meta-analysis. The x-axis represents the expected statistical power to replicate each association (P<0.05/9,473 = 5.3×10−6; where 9,473 is the number of associations reaching marginal genome-wide significance in our discovery trans-ancestry GWAS and with a minor allele frequency>1% in the EBB sample). The y-axis represents the -log10 of the association p-value in the EBB multiplied by the product of signs of estimated SNP effects in the discovery and in the EBB. Horizontal dotted line represents replication at P<0.001 and the vertical dotted line indicates 80% of statistical power. SNPs highlighted in green have an expected statistical power for replication >80%. One outlier (rs11100870), highlighted in red, does not replicate in the EBB sample. b, Proportion (P) of SNPs with a sign-consistent estimated effect between discovery GWAS (N~5.3M) and EBB. Expected proportions (E[P]) are calculated using equation (2) in the Methods. Error bars are defined as 1.96×P(1P)/m, where m is the number of SNPs in the corresponding MAF interval. Source data
Extended Data Fig. 4
Extended Data Fig. 4. Enrichment of genes containing pathogenic mutations that cause extreme height or abnormal skeletal growth syndromes near hotspots of GWS SNPs.
Four hundred and sixty-two (462) autosomal genes were curated from the Online Mendelian Inheritance in Man (OMIM) database. a, Red arrow indicates the observed enrichment statistic (OR = 2.5-fold) measuring the odds ratio of the presence of an OMIM gene within 100 kb of a GWS SNPs with a density > 1. The blue histogram represents the distribution of enrichment statistics from 1,000 random genes matched, which length distribution matches that of the OMIM genes. b, Enrichment of OMIM genes near high density GWS SNPs. High density is defined by on the x-axis by the minimum number of other independent GWS SNPs detected within 100 kb. Source data
Extended Data Fig. 5
Extended Data Fig. 5. Haplotypic analysis at the ACAN locus.
a, Distribution of estimated haplotype effects from 14,117 haplotypes covering a 100 kb long genomic region near the ACAN gene (hg19 genomic coordinates: chr15:89,307,521-89,407,521). b, Quantile-quantile plot of associations between these 14,117 haplotypes and height. c, Distribution of the variance explained by each of the 14,117 haplotypes. d, Mean signals density (y-axis) across simulated data where 1 causal SNP within the locus explains between 0.5% and 5% (x-axis) of trait variance. Causal variants were sampled from a pool of 13 SNPs with a 1.4×10−5 < MAF < 1% genotyped in 291,683 unrelated EUR participants of the UKB, with no missing values at these 13 SNPs. Standard errors were calculated as the standard deviation (s.d.) of signal density across 100 simulation replicates. GCTA-COJO analyses to identify independent signals were performed using a subset of 10,000 unrelated EUR participants of the UKB to mimic the large discrepancy between the size of the discovery GWAS and that of the LD reference used in our real data analyses. e, Proportion of VNTR length explained by 25 GWS SNPs identified near ACAN in 4 ancestries (European: EUR; South Asian: SAS; East Asian: EAS; African: AFR). f, Proportion of height variance explained in a sample of EUR UK Biobank participants by various sets of polymorphisms at the ACAN locus. rs3817428 and rs34949187 are two missense variants and rs7176941 is an intronic variant with high posterior causal probability identified in ref. . In e and f, error bars represent standard error (s.e.). Source data
Extended Data Fig. 6
Extended Data Fig. 6. Variance of height explained by common SNPs within 35 kb of GWS SNPs.
Stratified SNP-based heritability (hSNP2) estimates were obtained from a partition of the genome into two sets of 1000 Genomes imputed SNPs with a minor allele frequency (MAF) >1%: (1) SNPs within +/− 35 kb of GWS (GWS loci) vs. all other SNPs. Analyses were performed in samples of five different ancestry groups: European (EUR; UK Biobank only), African (AFR), East Asian (EAS) and South Asian (SAS) as described in the legend of Fig. 3. Estimates from stratified analyses were compared with SNP-based heritability estimates obtained from analysing HM3 SNPs only (dotted horizontal violet bar). Source data
Extended Data Fig. 7
Extended Data Fig. 7. Accuracy of PGSs derived from joint effects of SNPs ascertained at various significance thresholds.
The six panels show on their y-axes the prediction accuracy (R2) of multiple PGS across five target samples. The ancestry group and size of each target sample is indicated in the panel title. The top-left panel shows the averaged prediction accuracy in two European ancestry (EUR) target samples from the UK Biobank (UKB) and Lifelines Biobank (LLB). The other panels show prediction accuracies in individual target samples of African ancestry (AFR) from UKB and the PAGE study, East Asian ancestry (EAS) and South Asian ancestry (SAS) ancestry from the UKB and Hispanic ethnicity from the PAGE study. Each panel is divided in four columns representing the four significance levels used to ascertain SNPs using the GCTA-COJO algorithm. GCTA-COJO was applied to each ancestry-group specific GWAS meta-analysis with an ancestry-match linkage disequilibrium (LD) reference. We used genotypes from 50,000 (vs 350,000 for results reported in the main text) unrelated EUR participants as LD reference to run GCTA-COJO on the EUR- and the cross-ancestry GWAS meta-analysis. For the other ancestry groups, we used genotypes from 10,636 AFR individuals, 5,875 EAS individuals, 4,883 HIS individuals and 9,448 SAS individuals as LD reference (as described in Methods). Error bars are standard error (s.e.). The number of SNPs used in each PGS is indicated (in white) within each bar. Source data
Extended Data Fig. 8
Extended Data Fig. 8. Enrichment of height-associated genes identified at various GWAS sample sizes within 20 clusters of gene sets representing broad categories of biological pathways.
Gene-set enrichment was performed with MAGMA and DEPICT across seven GWAS with increasing sample sizes. Samples used (Lango Allen et al. (2010), n = 0.13M; Wood et al. (2014), n = 0.24M; Yengo et al. (2018), n = 0.7M; GIANT-EUR (no 23andMe), n = 1.63M; 23andMe-EUR, n = 2.5M; European-ancestry meta-analysis, n = 4.08M; and cross-ancestry meta-analysis, n = 5.31M) are described in Tables 1–2. The degree of enrichment of gene sets (MAGMA, DEPICT) of known skeletal growth disorder genes catalogued in the Online Mendelian Inheritance in Man (OMIM) database among 20 clusters of gene sets (see Methods section in Supplementary Note 5) is indicated by the blue-red colour scale. Enrichment for MAGMA and DEPICT was defined to be the number of prioritized gene sets (top 10% of gene sets) in each cluster divided by the 10% of the number of gene sets in the cluster. Enrichment for OMIM was defined to be the number of OMIM genes in a gene set (Z > 1.96) divided by the size of the gene set divided by the proportion of all genes in OMIM, then averaged across the cluster. Significant enrichment (compared to shuffled prioritization of gene sets or genes) is marked with *. Source data
Extended Data Fig. 9
Extended Data Fig. 9. Annotation-level saturation of GWAS discoveries as a function of sample size.
Increase in sample size from ~4 million to ~5 million is achieved by including ~1 million participants of non-European ancestry. a, Number of annotations showing a significant heritability enrichment as function the function of the sample size of the GWAS used to estimate these enrichment. Heritability enrichment was detected using a stratified LD score regression (LDSC) analysis of 97 genomic annotations included in the “baseline + LD” model from Gazal et al. b, Correlation between Z-scores measuring the statistical significance of heritability enrichments of 97 annotations (each dot is an annotation) in our largest GWAS (x-axis) as compared to down-sampled GWAS (y-axis). Sample size is denoted by the colour-code. c, Distribution of estimated enrichment statistics for 21 annotations found significantly enriched (P < 0.05/97) in at least 6 of the 7 GWAS analysed here. LoF-i genes: Loss of function intolerant genes; TSS: Transcription Start Sites; DGF: Digital genomic footprint; TFBS: Transcription Factor Binding Sites; DHS: DNAse I hypersensitive sites; GERP (NS): GERP++ score (number of substitutions). Source data
Extended Data Fig. 10
Extended Data Fig. 10. Partitioning of low-frequency SNP-based heritability within GWS loci.
Panels bd represent partitioned SNP-based heritability estimates from three samples (EBB: Estonian Biobank; UKB: UK Biobank; LLB: Lifelines Biobank) of unrelated European ancestry individuals independent of our discovery GWAS. a, Partitioned SNP-based heritability estimates obtained from an inverse-variance weighted meta-analysis of estimates shown in bd. SNPs were partitioned into four classes according to their minor allele frequency (MAF: 0.1% < MAF < 1% vs. MAF > 1%) and their position within versus outside GWS loci. The SNP-based heritability contributed by SNPs within GWS loci is denoted hGWS2, and that contributed by SNPs outside these loci is denoted hother2. These results are further discussed in Supplementary Note 6. Source data

Comment in

References

    1. Yang J, et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 2010;42:565–569. - PMC - PubMed
    1. The International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467:52–58. - PMC - PubMed
    1. Yengo L, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 2018;27:3641–3649. - PMC - PubMed
    1. Flint J, Ideker T. The great hairball gambit. PLoS Genet. 2019;15:e1008519. - PMC - PubMed
    1. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74. - PMC - PubMed

Publication types

Grants and funding