Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug 4;88(15):10381-10402.
doi: 10.1021/acs.joc.2c01903. Epub 2022 Oct 13.

Synthesis and Conformational Analysis of Hydantoin-Based Universal Peptidomimetics

Affiliations

Synthesis and Conformational Analysis of Hydantoin-Based Universal Peptidomimetics

Alessio M Caramiello et al. J Org Chem. .

Abstract

The synthesis of a collection of enantiomerically pure, systematically substituted hydantoins as structural privileged universal mimetic scaffolds is presented. It relies on a chemoselective condensation/cyclization domino process between isocyanates of quaternary or unsubstituted α-amino esters and N-alkyl aspartic acid diesters followed by standard hydrolysis/coupling reactions with amines, using liquid-liquid acid/base extraction protocols for the purification of the intermediates. Besides the nature of the α carbon on the isocyanate moiety, either a quaternary carbon or a more flexible methylene group, conformational studies in silico (molecular modeling), in solution (NMR, circular dichroism (CD), Fourier transform infrared (FTIR)), and in solid state (X-ray) showed that the presented hydantoin-based peptidomimetics are able to project their substituents in positions superimposable to the side chains of common protein secondary structures such as α-helix and β-turn, being the open α-helix conformation slightly favorable according to molecular modeling, while the closed β-turn conformation preferred in solution and in solid state.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Synthetic Strategies for the Synthesis of Hydantoin-Based Universal Peptidomimetics
Scheme 2
Scheme 2. MC Process Leading to Hydantoin F
Scheme 3
Scheme 3. Synthesis of Hydantoin Intermediate 5h
Scheme 4
Scheme 4. Synthesis of Hydantoin Universal Peptidomimetics 8
Chart 1
Chart 1. Structures of Hydantoin Universal Peptidomimetics 8
Figure 1
Figure 1
β-Turn- and β-helix-like conformations of universal peptidomimetics 8.
Figure 2
Figure 2
(a) α-Helix (left)- and β-turn (right)-like conformations for representative compound 8r; (b) superimposition of 8r conformers with an α-helix model in orange (left), 310-helix model in orange (center), and β-turn in green (right). For the α-helix, the relevant i, i + 4, and i + 7 positions are highlighted.
Figure 3
Figure 3
DMSO titration experiments on substrates 8p, 8r.
Figure 4
Figure 4
CD spectra for peptidomimetics 8p, 8r.
Figure 5
Figure 5
ATR-FTIR spectrum of 8r.
Figure 6
Figure 6
ORTEP diagram of 8r, with the arbitrary atom-numbering scheme. Thermal ellipsoids are drawn at the 40% probability level.
Figure 7
Figure 7
(A) Stick model of 8r in an arbitrary orientation, evidencing the main H-bonds. (B) Stick model showing the crystal packing along the c axis. Hydrogen atoms are omitted for the sake of clarity.
Figure 8
Figure 8
(A) HS mapped over dnorm with a fixed color scale in the range −0.5808 au (red) to 2.9223 au (blue), based on the length of the intermolecular contacts with respect to the sum of the van der Waals radii (red: shorter; blue: longer; white: same). (B) HS mapped over the shape index (color scale: −0.9973 to 0.9977 au). Blue areas represent bumps, and red regions indicate hollows. (C) HS mapped over the curvedness (color scale: −4.4169 to 0.8187 au). Green represents flat regions, and blue indicates edges.
Figure 9
Figure 9
Two-dimensional Fingerprint plots of HS, providing a visual summary of the frequency of each combination of de and di across the HS. Points with a contribution to the surface are colored blue for a small contribution to green for a great contribution.

References

    1. Raju T. N. The Nobel chronicles. Lancet 2000, 355, 1022.10.1016/S0140-6736(05)74775-9. - DOI - PubMed
    1. Evans B. E.; Rittle K. E.; Bock M. G.; DiPardo R. M.; Freidinger R. M.; Whitter W. L.; Lundell G. F.; Veber D. F.; Anderson P. S.; Chang R. S.; Lotti V. J.; Cerino D. J.; Che T. B.; Kling P. J.; Kunkel K. A.; Springer J. P.; Hirshfield J. Methods for Drug Discovery: Development of Potent, Selective, Orally Effective Cholecystokinin Antagonists. J. Med. Chem. 1988, 31, 2235–2246. 10.1021/jm00120a002. - DOI - PubMed
    2. DeSimone R. W.; Currie K. S.; Mitchell S. A.; Darrow J. W.; Pippin D. A. Privileged Structures: Applications in Drug Discovery. Comb. Chem. High Throughput Screening 2004, 7, 473–493. 10.2174/1386207043328544. - DOI - PubMed
    3. Welsch M. E.; Snyder S. A.; Stockwell B. R. Privileged Scaffolds for Library Design and Drug Discovery. Curr. Opin. Chem. Biol. 2010, 14, 347–361. 10.1016/j.cbpa.2010.02.018. - DOI - PMC - PubMed
    4. Alfano A. I.; Brindis M.; Lange H. Flow Synthesis Approaches to Privileged Scaffolds – Recent Routes Reviewed for Green and Sustainable Aspects. Green Chem. 2021, 23, 2233–2292. 10.1039/D0GC03883K. - DOI
    1. Pushpakom S.; Iorio F.; Eyers P. A.; Escott K. J.; Hopper S.; Wells A.; Doig A.; Guilliams T.; Latimer J.; McNamee C.; Norris A.; Sanseau P.; Cavalla D.; Pirmohamed M. Drug Repurposing: Progress, Challenges and Recommendations. Nat. Rev. Drug Discovery 2019, 18, 41–58. 10.1038/nrd.2018.168. - DOI - PubMed
    2. Pillaiyar T.; Meenakshisundaram S.; Manickam M.; Sankaranarayanan M. A Medical Chemistry Perspective of Drug Repositioning: Recent Advances and Challenges in Drug Discovery. Eur. J. Med. Chem. 2020, 195, 11227510.1016/j.ejmech.2020.112275. - DOI - PMC - PubMed
    1. Shang S.; Tan D. S. Advancing Chemistry and Biology Through Diversity-Oriented Synthesis of Natural Product-Like. Curr. Opin. Chem. Biol. 2005, 9, 248–258. 10.1016/j.cbpa.2005.03.006. - DOI - PubMed
    2. Dandapani S.; Marcaurelle L. A. Current Strategies for Diversity-Oriented Synthesis. Curr. Opin. Chem. Biol. 2010, 14, 362–370. 10.1016/j.cbpa.2010.03.018. - DOI - PubMed
    3. Kim J.; Jung J.; Koo J.; Cho W.; Lee W. S.; Kim C.; Park W.; Park S. B. Diversity-Oriented Synthetic Strategy for Developing a Chemical Modulator of Protein-Protein Interaction. Nat. Commun. 2016, 7, 1319610.1038/ncomms13196. - DOI - PMC - PubMed
    1. Kaiser M.; Wetzel S.; Kumar K.; Waldmann H. Biology-Inspired Synthesis of Compound Libraries. Cell. Mol. Life Sci. 2008, 65, 1186–1201. 10.1007/s00018-007-7492-1. - DOI - PMC - PubMed
    2. Wetzel S.; Bon R. S.; Kumar K.; Waldmann H. Biology-Oriented Synthesis. Angew. Chem., Int. Ed. 2011, 50, 10800–10826. 10.1002/anie.201007004. - DOI - PubMed
    3. Garcia-Castro M.; Zimmermann S.; Sankar M. G.; Kumar K. Scaffold Diversity Synthesis and Its Application in Probe and Drug Discovery. Angew. Chem., Int. Ed. 2016, 55, 7586–7605. 10.1002/anie.201508818. - DOI - PubMed