Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Oct 9;27(19):6708.
doi: 10.3390/molecules27196708.

Diaza-1,3-butadienes as Useful Intermediate in Heterocycles Synthesis

Affiliations
Review

Diaza-1,3-butadienes as Useful Intermediate in Heterocycles Synthesis

Jorge Heredia-Moya et al. Molecules. .

Abstract

Many heterocyclic compounds can be synthetized using diaza-1,3-butadienes (DADs) as key structural precursors. Isolated and in situ diaza-1,3-butadienes, produced from their respective precursors (typically imines and hydrazones) under a variety of conditions, can both react with a wide range of substrates in many kinds of reactions. Most of these reactions discussed here include nucleophilic additions, Michael-type reactions, cycloadditions, Diels-Alder, inverse electron demand Diels-Alder, and aza-Diels-Alder reactions. This review focuses on the reports during the last 10 years employing 1,2-diaza-, 1,3-diaza-, 2,3-diaza-, and 1,4-diaza-1,3-butadienes as intermediates to synthesize heterocycles such as indole, pyrazole, 1,2,3-triazole, imidazoline, pyrimidinone, pyrazoline, -lactam, and imidazolidine, among others. Fused heterocycles, such as quinazoline, isoquinoline, and dihydroquinoxaline derivatives, are also included in the review.

Keywords: diaza-1,3-butadienes; heterocycles; synthesis.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Scheme 1
Scheme 1
Structure and synthesis of diaza-1,3-butadienes.
Scheme 2
Scheme 2
Synthesis of tetrahydroberberine derivatives 5.
Scheme 3
Scheme 3
Multicomponent sequential cyclization for the synthesis of 5-arylamino thiophenes derivatives.
Scheme 4
Scheme 4
Synthesis of indole derivatives 24 using 1,2-diaza-1,3-dienes and anilines.
Scheme 5
Scheme 5
Synthesis of 3-alkyl- and 3-aryl 2-unsubstituted indoles 27 using 1,2-diaza-1,3-dienes.
Scheme 6
Scheme 6
Synthesis of 1,2,3-triazole derivatives from 1,2-diaza-1,3-dienes and sodium azide.
Scheme 7
Scheme 7
Triazole synthesis from bifunctional amino reagents and 1,2-diaza-1,3-dienes generates in situ.
Scheme 8
Scheme 8
Triazole synthesis from amines and 1,2-diaza-1,3-dienes generates in situ.
Scheme 9
Scheme 9
Triazole synthesis from amines and 1,2-diaza-1,3-dienes generates in situ from dichloro-N-tosylhydrazones.
Scheme 10
Scheme 10
Synthesis of pyrazoles 50 from conjugated hydrazones and 1,2-diaza-1,3-dienes.
Scheme 11
Scheme 11
Pyrazolones synthesis from 1,2-diaza-1,3-dienes by a sequence Michael-type nucleophilic attack/cyclization/[2,3]-Wittig rearrangement.
Scheme 12
Scheme 12
Synthesis of 1-aminopyrrole derivatives 58 from catalyzed cycloaddition of 1,2-diaza,1-3-dienes.
Scheme 13
Scheme 13
Synthesis of thienodolin alkaloid 64 from indoline 2-thiones and 1,2-diaza-1,3-dienes.
Scheme 14
Scheme 14
Synthesis of Pyrrolo-pyridines derivatives 73.
Scheme 15
Scheme 15
Tandem synthesis of benzo[4,5]imidazo[1,2-b]pyridazine derivatives 80.
Scheme 16
Scheme 16
Reaction mechanism for synthesis of pyridazone derivatives 82 from 4,4-dichloro-1,2-diazabuta-1,3-dienes, with malonate ester or cyanoacetic esters.
Scheme 17
Scheme 17
Pyridazone synthesis from 4,4-dichloro-1,2-diazabuta-1,3-dienes and ethyl acetoacetate.
Scheme 18
Scheme 18
Dihydropyridazinones synthesis by [4+2] annulation of 1,2-diaza-1,3-dienes with N-acyl amino acids.
Scheme 19
Scheme 19
Synthesis of 3,7-diaryl-6,7-dihydro-5H-6-substituted thiazolo[3,2-a]pyrimidin-5-ones 97.
Scheme 20
Scheme 20
[4+2] Cycloaddition of 1,2-diaza-1,3-dienes with 3-phenacylideneoxindoles (aza-Diels-Alder reaction).
Scheme 21
Scheme 21
Aza-Diels–Alder reaction between electron-deficient 3-methyleneoxindoles and 1,2-diaza-1,3-dienes.
Scheme 22
Scheme 22
Synthesis of bicyclo[4.1.0]tetrahydropyridazine derivatives 109 from sulfur ylides and 1,2-diaza-1,3-dienes generated in situ.
Scheme 23
Scheme 23
Synthesis of dihydropyridazines 112 or pyridazines 115 by [4+2] cycloaddition of enaminones with in situ generated 1,2-diaza-1,3-dienes.
Scheme 24
Scheme 24
Aza-Diels–Alder reaction between 3-tetrazolyl-1,2-diaza-1,3-diene 116 with methyl vinyl ketone.
Scheme 25
Scheme 25
Synthesis of tetrahydropyridazine derivatives 123 from enamides and 1,2-diaza-1,3-dienes.
Scheme 26
Scheme 26
Tetrahydropyridazines derived 127 from 3-vinylindoles.
Scheme 27
Scheme 27
Tetrahydro-1,2,4-triazine synthesis from 1,3,5-triazinanes and 1,2-diaza-1,3-diene generated in situ.
Scheme 28
Scheme 28
[4+2] Inverse aza-Diels-Alder reaction of α,β-unsaturated thioesters with 1,2-diaza-1,3-dienes.
Scheme 29
Scheme 29
[4+2] Cycloaddition reaction of 1,2-diaza-1,3-dienes with indoles catalyzed by ZnCl2.
Scheme 30
Scheme 30
Synthesis of 2-imidazoline 146.
Scheme 31
Scheme 31
Groebke–Blackburn–Bienaymé reaction.
Scheme 32
Scheme 32
Isocianide synthesis in situ from N-formamide 155 and its use in the Groebke–Blackburn–Bienaymé reaction.
Scheme 33
Scheme 33
Use of different 2-aminoazines in the Groebke–Blackburn–Bienaymé reaction.
Scheme 34
Scheme 34
Complex heterocycles derived from imidazo[1,2-a]-heterocycles.
Scheme 35
Scheme 35
Synthesis of 2-imidazoline derivatives 160.
Scheme 36
Scheme 36
Synthesis of pyrimidine derivatives 169 and 170.
Scheme 37
Scheme 37
Synthesis of benzothiazolopyrimidine derivatives 173.
Scheme 38
Scheme 38
Synthesis of dihydropyrimidine derivatives.
Scheme 39
Scheme 39
Synthesis of pirimidinones 184.
Scheme 40
Scheme 40
Synthesis of pyrimido[5,4-b][1,4]thiazin-8-ium iodide 193.
Scheme 41
Scheme 41
Synthesis of 3,7-diaryl-6,7-dihydro-5H-6-substituted thiazolo[3,2-a]pyrimidin-5-ones 195.
Scheme 42
Scheme 42
Synthesis of 4- susbstituted 2-(trichloromethyl) quinazolines 203.
Scheme 43
Scheme 43
Synthesis of perhydro [1,2,4] triazolo [1,2-a] [1,2,4] triazole-1,5-dithiones 204.
Scheme 44
Scheme 44
Intramolecular cyclization of 2,3-diaza-1,3-butadienes 207 catalyzed by FeCl3.
Scheme 45
Scheme 45
Intramolecular cyclization of 2,3-diaza-1,3-butadienes 209 catalyzed by Cu.
Scheme 46
Scheme 46
Intramolecular cyclization of 2,3-diaza-1,3-butadienes 211 catalyzed by I2.
Scheme 47
Scheme 47
Synthesis of (N′-substituted)-hydrazo-4-aryl-1,4-dihydropyridines 217.
Scheme 48
Scheme 48
Synthesis of isoquinoline derivatives 218.
Scheme 49
Scheme 49
Synthesis of mono β-lactams 218 and bis-β-lactams 219.
Scheme 50
Scheme 50
Synthesis of 1,4-diazabicyclo[4.2.0]octan-8-ones 224.
Scheme 51
Scheme 51
Synthesis of imidazolium salt 225 by mechanochemical one-pot two-step procedure.
Scheme 52
Scheme 52
Synthesis of chiral imidazolium salt 227.
Scheme 53
Scheme 53
Synthesis of unsymmetrical imidazolium salts 229.
Scheme 54
Scheme 54
Mechanism reported for the synthesis of the unsymmetrical imidazolium salts 235.
Scheme 55
Scheme 55
Synthesis of the unsymmetrical imidazolium salts 236.
Scheme 56
Scheme 56
Synthesis of bulky imidazolium salts 239 containing an acenaphthylene element.
Scheme 57
Scheme 57
Synthesis of higher steric hindrance imidazolium salts 242.
Scheme 58
Scheme 58
Synthesis of zwitterionic imidazolium salt 243.
Scheme 59
Scheme 59
Synthesis of heteroatom-functionalized imidazolium salts.
Scheme 60
Scheme 60
Synthesis of 2-formylimidazolium salt 254 and reaction of decarbonylation.
Scheme 61
Scheme 61
Synthesis of 4,5-bis(arylimino)-2-(alkylimino)imidazolidines 258.
Scheme 62
Scheme 62
Synthesis of 1,3-thiazolidine-2-thiones 262.
Scheme 63
Scheme 63
Synthesis of thiazolidines derivatives 264.
Scheme 64
Scheme 64
Synthesis of 1,3-thiazolidine-2-thiones 267 and 271.
Scheme 65
Scheme 65
Synthesis of 1,3,2-Diazaphospholenes P-substituents derivatives.
Scheme 66
Scheme 66
Reaction of cyclic 1,4-diazadiene 223 with diketone 276.
Scheme 67
Scheme 67
Synthesis of N,N-disubstituted exo-2-imidazolidinone dienes 282 and cycloaddition reactions.
Scheme 68
Scheme 68
Synthesis of pyrrolo[3,2-b]pyrrole- 1,4-diones (isoDPP) derivatives 287.
Scheme 69
Scheme 69
Examples of iso DPP derivatives 287.
Scheme 70
Scheme 70
Synthesis of 1,4,diaza-2,3-diborinine derivatives.
Scheme 71
Scheme 71
Synthesis of dihydroxyquinoxaline derivative 297 by an NHC-catalyzed α-carbon amination of α-chloroaldehyde with cyclohexadiene-1,2-diimine.
Scheme 72
Scheme 72
Synthesis of dihydroxyquinoxaline derivative 301 in a one-pot reaction.
Scheme 73
Scheme 73
Synthesis of dihydroxyquinoxaline derivative 305 by hetero-Diels–Alder reaction of ketene enolates and ortho-benzoquinone diimides 302.

Similar articles

Cited by

  • Editorial: Heterodienes in organic synthesis.
    Sukhorukov AY. Sukhorukov AY. Front Chem. 2024 Apr 8;12:1403024. doi: 10.3389/fchem.2024.1403024. eCollection 2024. Front Chem. 2024. PMID: 38650672 Free PMC article. No abstract available.

References

    1. Belskaya N.P., Eliseeva A.I., Bakulev V.A. Hydrazones as substrates for cycloaddition reactions. Russ. Chem. Rev. 2015;84:1226–1257. doi: 10.1070/RCR4463. - DOI
    1. Zelenin K.N., Bezhan I.P., Matveeva Z.M. Synthesis of nitrogen heterocycles by (4+2)π-cycloaddition from nitrogen-containing heterodienes (“azadiene synthesis”) Chem. Heterocycl. Compd. 1972;8:525–534. doi: 10.1007/BF00488138. - DOI
    1. Sharma P., Kumar R., Bhargava G. Recent development in the synthesis of pyrrolin-4-ones/pyrrolin-3-ones. J. Heterocycl. Chem. 2020;57:4115–4135. doi: 10.1002/jhet.4143. - DOI
    1. Kaur T., Wadhwa P., Bagchi S., Sharma A. Isocyanide based [4+1] cycloaddition reactions: An indispensable tool in multi-component reactions (MCRs) Chem. Commun. 2016;52:6958–6976. doi: 10.1039/C6CC01562J. - DOI - PubMed
    1. Moskal J., Bronowski J., Rogowski A. Conjugated Schiff bases, XIII. sterically congested 1,4-diazabutadienes as dipolar reagents in 1,3-cycloaddition. Mon. Chem. Chem. Mon. 1981;112:1405–1416. doi: 10.1007/BF00900006. - DOI

LinkOut - more resources