Model-Free Adaptive Iterative Learning Bipartite Containment Control for Multi-Agent Systems
- PMID: 36236210
- PMCID: PMC9572864
- DOI: 10.3390/s22197115
Model-Free Adaptive Iterative Learning Bipartite Containment Control for Multi-Agent Systems
Abstract
This paper studies the bipartite containment tracking problem for a class of nonlinear multi-agent systems (MASs), where the interactions among agents can be both cooperative or antagonistic. Firstly, by the dynamic linearization method, we propose a novel model-free adaptive iterative learning control (MFAILC) to solve the bipartite containment problem of MASs. The designed controller only relies on the input and output data of the agent without requiring the model information of MASs. Secondly, we give the convergence condition that the containment error asymptotically converges to zero. The result shows that the output states of all followers will converge to the convex hull formed by the output states of leaders and the symmetric output states of leaders. Finally, the simulation verifies the effectiveness of the proposed method.
Keywords: model-free adaptive iterative learning control; multi-agent systems; signed networks.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Similar articles
-
Cooperative Bipartite Containment Control for Multiagent Systems Based on Adaptive Distributed Observer.IEEE Trans Cybern. 2022 Jun;52(6):5432-5440. doi: 10.1109/TCYB.2020.3031933. Epub 2022 Jun 16. IEEE Trans Cybern. 2022. PMID: 33232254
-
Formation-containment control of multi-agent systems with communication delays.ISA Trans. 2022 Sep;128(Pt A):32-43. doi: 10.1016/j.isatra.2021.09.012. Epub 2021 Sep 23. ISA Trans. 2022. PMID: 34654575
-
Observer-based distributed adaptive fault-tolerant containment control of multi-agent systems with general linear dynamics.ISA Trans. 2017 Nov;71(Pt 1):32-39. doi: 10.1016/j.isatra.2017.06.007. Epub 2017 Jun 22. ISA Trans. 2017. PMID: 28647163
-
Event-Triggered Distributed Data-Driven Iterative Learning Bipartite Formation Control for Unknown Nonlinear Multiagent Systems.IEEE Trans Neural Netw Learn Syst. 2022 Jun 8;PP. doi: 10.1109/TNNLS.2022.3174885. Online ahead of print. IEEE Trans Neural Netw Learn Syst. 2022. PMID: 35675240
-
Adaptive Neural Network Event-Triggered Output-Feedback Containment Control for Nonlinear MASs With Input Quantization.IEEE Trans Cybern. 2023 Nov;53(11):7406-7416. doi: 10.1109/TCYB.2023.3249154. Epub 2023 Oct 17. IEEE Trans Cybern. 2023. PMID: 37028360
Cited by
-
Multivariable Iterative Learning Control Design for Precision Control of Flexible Feed Drives.Sensors (Basel). 2024 May 30;24(11):3536. doi: 10.3390/s24113536. Sensors (Basel). 2024. PMID: 38894327 Free PMC article.
-
A Hybrid State/Disturbance Observer-Based Feedback Control of Robot with Multiple Constraints.Sensors (Basel). 2022 Nov 24;22(23):9112. doi: 10.3390/s22239112. Sensors (Basel). 2022. PMID: 36501814 Free PMC article.
References
-
- Jadbabaie A., Lin J., Morse A.S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control. 2003;48:988–1001. doi: 10.1109/TAC.2003.812781. - DOI
-
- Wang L., Xiao F. Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control. 2010;55:950–955. doi: 10.1109/TAC.2010.2041610. - DOI
-
- Liu H., Xie G., Wang L. Necessary and sufficient conditions for containment control of networked multi-agent systems. Automatica. 2012;48:1415–1422. doi: 10.1016/j.automatica.2012.05.010. - DOI
-
- Zheng Y., Wang L. Containment control of heterogeneous multi-agent systems. Int. J. Control. 2014;87:1–8. doi: 10.1080/00207179.2013.814074. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources