Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov;82(6):1556-1564.
doi: 10.3348/jksr.2020.0133. Epub 2021 Jul 28.

Quantification of the Elastic Property of Normal Thigh Muscles Using MR Elastography: Our Initial Experience

Quantification of the Elastic Property of Normal Thigh Muscles Using MR Elastography: Our Initial Experience

Junghoon Kim et al. Taehan Yongsang Uihakhoe Chi. 2021 Nov.

Abstract

Purpose: This study aimed to apply MR elastography (MRE) to achieve in vivo evaluation of the elastic properties of thigh muscles and validate the feasibility of quantifying the elasticity of normal thigh muscles using MRE.

Materials and methods: This prospective study included 10 volunteer subjects [mean age, 32.5 years, (range, 23-45 years)] who reported normal activities of daily living and underwent both T2-weighted axial images and MRE of thigh muscles on the same day. A sequence with a motion-encoding gradient was used in the MRE to map the propagating shear waves in the muscle. Elastic properties were quantified as the shear modulus of the following four thigh muscles at rest; the vastus medialis, vastus lateralis, adductor magnus, and biceps femoris.

Results: The mean shear modulus was 0.98 ± 0.32 kPa and 1.00 ± 0.33 kPa for the vastus medialis, 1.10 ± 0.46 kPa and 1.07 ± 0.43 kPa for the vastus lateralis, 0.91 ± 0.41 kPa and 0.93 ± 0.47 kPa for the adductor magnus, and 0.99 ± 0.37 kPa and 0.94 ± 0.32 kPa for the biceps femoris, with reader 1 and 2, respectively. No significant difference was observed in the shear modulus based on sex (p < 0.05). Aging consistently showed a statistically significant negative correlation (p < 0.05) with the shear modulus of the thigh muscles, except for the vastus medialis (p = 0.194 for reader 1 and p = 0.355 for reader 2).

Conclusion: MRE is a quantitative technique used to measure the elastic properties of individual muscles with excellent inter-observer agreement. Age was consistently significantly negatively correlated with the shear stiffness of muscles, except for the vastus medialis.

목적: 정상 대퇴 근육의 탄성도를 정량적으로 측정함에 있어 자기 공명 탄성 검사의 실현 가능성을 확인하고 정상 대퇴 근육의 탄성도를 측정한다.

대상과 방법: 이 전향적 연구는 일상적인 보행에 지장이 없는 자원자를 대상으로 대퇴부의 T2 강조 축상 영상과 대퇴 근육의 자기 공명 탄성 검사를 시행하였고 최종적으로 10명의 피실험자가 포함되었다[평균 연령, 32.5세, (범위, 23~45세)]. 탄성 특성은 휴식 상태에서 각 대퇴 근육에서의 전단 탄성 계수를 정량적으로 다음 4개의 대퇴 근육에 대해 측정하였다; 내측넓은근, 외측넓은근, 대내전근, 대퇴이두근.

결과: 대퇴 근육의 평균 전단 탄성 계수는 각각 두 명의 판독자에서 내측넓은근은 0.98 ± 0.32 kPa, 1.00 ± 0.33 kPa, 외측넓은근은 1.10 ± 0.46 kPa, 1.07 ± 0.43 kPa, 대내전근은 0.91 ± 0.41 kPa, 0.93 ± 0.47 kPa, 대퇴이두근은 0.99 ± 0.37 kPa, 0.94 ± 0.32 kPa으로 측정되었다. 성별에 따른 전단 탄성 계수의 차이는 유의미하지 않게 나타났다(p < 0.05). 내측넓은근(판독자 1; p = 0.194; 판독자 2; p = 0.355)을 제외한 나머지 대퇴 근육에서 연령은 각 근육의 전단 탄성 계수와 유의미하게 일관된 음의 상관관계를 보였다.

결론: 자기 공명 탄성 검사는 개별적인 근육의 탄성 특성을 정량적으로 측정할 수 있는 유용한 검사이다. 내측넓은근을 제외한 대퇴 근육에서 나이는 근육의 전단 탄성계수와 통계학적으로 유의미한 일관된 음의 상관관계를 보였다.

Keywords: Elasticity Imaging; Magnetic Resonance Elastography; Magnetic Resonance Imaging; Mechanical Properties; Skeletal Muscle; Thigh.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: The authors have no potential conflicts of interest to disclose.

Figures

Fig. 1
Fig. 1. Setup for MR elastography acquisition in the 3T MRI system
A. Subjects are placed in the supine position on the table to characterize thigh muscles (vastus medialis, vastus lateralis, adductor magnus, and biceps femoris). The pneumatic driver (arrow) is attached to the posterior thigh and secured with straps. B. The pneumatic transducer is used to produce 60 Hz mechanical wave.
Fig. 2
Fig. 2. Estimation of shear stiffness of thigh muscles on MR elastography scans
After identifying the exact locations of muscles to be measured at anatomical magnitude images, freehand ROIs are drawn, and the same ROI is simultaneously defined in the same areas along the muscles on the stiffness map. Finally, the shear stiffness is estimated automatically from the stiffness map. Unreliable pixels on the confidence-area-overlapped stiffness maps are easily identified as excluded pixels (checkered pattern), and the results show the number of included pixels and excluded pixels in the ROIs. A. Wave images. B. Anatomical magnitude image. C. Stiffness map with overlapped confidence area. D. Estimated shear stiffness. ROI = region of interest

References

    1. Ito D, Numano T, Mizuhara K, Takamoto K, Onishi T, Nishijo H. A new technique for MR elastography of the supraspinatus muscle: a gradient-echo type multi-echo sequence. Magn Reson Imaging. 2016;34:1181–1188. - PubMed
    1. Mariappan YK, Glaser KJ, Ehman RL. Magnetic resonance elastography: a review. Clin Anat. 2010;23:497–511. - PMC - PubMed
    1. Glaser KJ, Manduca A, Ehman RL. Review of MR elastography applications and recent developments. J Magn Reson Imaging. 2012;36:757–774. - PMC - PubMed
    1. Sarvazyan AP, Skovoroda AR, Emelianov SY, Fowlkes JB, Pipe JG, Adler RS, et al. In: Acoustical imaging. Jones JP, editor. vol 21. Boston, MA: Springer; 1995. Biophysical bases of elasticity imaging; pp. 223–240.
    1. Uffmann K, Maderwald S, Ajaj W, Galban CG, Mateiescu S, Quick HH, et al. In vivo elasticity measurements of extremity skeletal muscle with MR elastography. NMR Biomed. 2004;17:181–190. - PubMed