Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec 12;67(24).
doi: 10.1088/1361-6560/ac9a9b.

Characterization of a miniaturized scintillator detector for time-resolved treatment monitoring in HDR-brachytherapy

Affiliations

Characterization of a miniaturized scintillator detector for time-resolved treatment monitoring in HDR-brachytherapy

Mathieu Gonod et al. Phys Med Biol. .

Abstract

Purpose.HDR brachytherapy combines steep dose gradients in space and time, thereby requiring detectors of high spatial and temporal resolution to perform accurate treatment monitoring. We demonstrate a miniaturized fiber-integrated scintillator detector (MSD) of unmatched compactness which fulfills these conditions.Methods.The MSD consists of a 0.28 mm large and 0.43 mm long detection cell (Gd2O2S:Tb) coupled to a 110 micron outer diameter silica optical fiber. The fiber probe is tested in a phantom using a MicroSelectron 9.1 Ci Ir-192 HDR afterloader. The detection signal is acquired at a rate of 0.08 s with a standard sCMOS camera coupled to a chromatic filter (to cancel spurious Cerenkov signal). The dwell position and time monitoring are analyzed over prostate treatment sequences with dwell times spanning from 0.1 to 11 s. The dose rate at the probe position is both evaluated from a direct measurement and by reconstruction from the measured dwell position using the AAPM TG-43 formalism.Results.A total number of 1384 dwell positions are analyzed. In average, the measured dwell positions differ by 0.023 ± 0.077 mm from planned values over a 6-54 mm source-probe distance range. The standard deviation of the measured dwell positions is below 0.8 mm. 94% of the 966 dwell positions occurring at a source-probe inter-catheter spacing below 20 mm are successfully identified, with a 100% detection rate for dwell times exceeding 0.5 s. The average deviation to the planned dwell times is of 0.005 ± 0.060 s. The instant dose retrieval from dwell position monitoring leads to a relative mismatch to planned values of 0.14% ± 0.7%.Conclusion.A miniaturized Gd2O2S:Tb detector coupled to a standard sCMOS camera can be used for time-resolved treatment monitoring in HDR Brachytherapy.

Keywords: HDR brachytherapy; dose rate monitoring; dwell position monitoring; dwell time verification; in vivo dosimetry; miniaturized scintillator detector; source tracking.

PubMed Disclaimer

LinkOut - more resources