Utility of probability scores for the diagnosis of pulmonary embolism in patients with SARS-CoV-2 infection: A systematic review
- PMID: 36241500
- PMCID: PMC9492501
- DOI: 10.1016/j.rceng.2022.07.004
Utility of probability scores for the diagnosis of pulmonary embolism in patients with SARS-CoV-2 infection: A systematic review
Abstract
Background and objective: Clinical prediction models determine the pre-test probability of pulmonary embolism (PE) and assess the need for tests for these patients. Coronavirus infection is associated with a greater risk of PE, increasing its severity and conferring a worse prognosis. The pathogenesis of PE appears to be different in patients with and without SARS-CoV-2 infection. This systematic review aims to discover the utility of probability models developed for PE in patients with COVID-19 by reviewing the available literature.
Methods: A literature search on the PubMed, Scopus, and EMBASE databases was carried out. All studies that reported data on the use of clinical prediction models for PE in patients with COVID-19 were included. Study quality was assessed using the Newcastle-Ottawa scale for non-randomized studies.
Results: Thirteen studies that evaluated five prediction models (Wells score, Geneva score, YEARS algorithm, and PERC and PEGeD clinical decision rules) were included. The different scales were used in 1,187 patients with COVID-19. Overall, the models showed limited predictive ability. The two-level Wells score with low (or unlikely) clinical probability in combination with a D-dimer level <3000ng/mL or a normal bedside lung ultrasound showed an adequate correlation for ruling out PE.
Conclusions: Our systematic review suggests that the clinical prediction models available for PE that were developed in the general population are not applicable to patients with COVID-19. Therefore, their use is in clinical practice as the only diagnostic screening tool is not recommended. New clinical probability models for PE that are validated in these patients are needed.
Antecedentes y objetivo: Las escalas de predicción clínica para embolia de pulmón (EP) determinan la probabilidad pretest y valoran la necesidad de las pruebas para estos pacientes. La infección por coronavirus se asocia a un mayor riesgo de EP aumentando su gravedad y confiriendo un peor pronóstico. La patogénesis de la EP parece ser diferente en pacientes con y sin infección por SARS-CoV-2. Esta revisión sistemática pretende conocer, revisando la bibliografía disponible, la utilidad de los modelos predictivos desarrollados para EP en pacientes con COVID-19.
Métodos: Se realizó una búsqueda bibliográfica en las bases de datos de PubMed, Scopus y EMBASE, incluyendo todos los estudios que comunican datos relacionados con la aplicación de escalas de predicción clínica para EP en pacientes con COVID-19. La calidad de los estudios se evaluó con la escala Newcastle–Ottawa para estudios no aleatorizados.
Resultados: Se incluyeron 13 estudios de cohortes que evaluaron cinco modelos predictivos (escala de Wells, puntuación de Ginebra, algoritmo YEARS y las reglas de decisión clínica PERC y PEGeD). Las diversas escalas se aplicaron en 1.187 pacientes con COVID-19. En general, los modelos tuvieron una capacidad predictiva limitada. La escala de Wells de dos categorías con probabilidad clínica baja (o improbable) en combinación con un dímero D < 3000 ng/mL o con una ecografía pulmonar a pie de cama normal mostraron una adecuada correlación para excluir la EP.
Conclusión: Nuestra revisión sistemática sugiere que las escalas de predicción disponibles para EP desarrolladas en población general no son aplicables a los pacientes con COVID-19 por lo que, de momento, no se recomienda su uso en la práctica clínica como única herramienta de cribado diagnóstico. Se necesitan nuevas escalas de probabilidad clínica para EP validadas en estos pacientes.
Keywords: COVID-19; Computed tomography pulmonary angiography; Diagnostic prediction model; Embolia pulmonar; Escala de predicción diagnóstica; Estado hipercoagulable; Hypercoagulable state; Pulmonary embolism; Thromboinflammation; Tomografía computarizada de arterias pulmonares; Tromboinflamación.
Copyright © 2022 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.
Similar articles
-
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
-
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3. Cochrane Database Syst Rev. 2022. PMID: 35866452 Free PMC article.
-
Antibody tests for identification of current and past infection with SARS-CoV-2.Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652. doi: 10.1002/14651858.CD013652.pub2. Cochrane Database Syst Rev. 2022. PMID: 36394900 Free PMC article.
-
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340. Health Technol Assess. 2006. PMID: 16959170
-
Measures implemented in the school setting to contain the COVID-19 pandemic.Cochrane Database Syst Rev. 2022 Jan 17;1(1):CD015029. doi: 10.1002/14651858.CD015029. Cochrane Database Syst Rev. 2022. Update in: Cochrane Database Syst Rev. 2024 May 2;5:CD015029. doi: 10.1002/14651858.CD015029.pub2. PMID: 35037252 Free PMC article. Updated.
Cited by
-
CT pulmonary angiography in the inpatients: A 5-year retrospective view at the end of COVID-19 public health emergency.Medicine (Baltimore). 2024 Nov 8;103(45):e40351. doi: 10.1097/MD.0000000000040351. Medicine (Baltimore). 2024. PMID: 39533597 Free PMC article.
-
Machine Learning-Based Prediction of Pulmonary Embolism Prognosis Using Nutritional and Inflammatory Indices.Clin Appl Thromb Hemost. 2024 Jan-Dec;30:10760296241300484. doi: 10.1177/10760296241300484. Clin Appl Thromb Hemost. 2024. PMID: 39552298 Free PMC article.
-
CT pulmonary angiography in the emergency department: utilization and positivity rates during various phases of the COVID-19 pandemic.Emerg Radiol. 2024 Jun;31(3):293-301. doi: 10.1007/s10140-024-02218-0. Epub 2024 Mar 23. Emerg Radiol. 2024. PMID: 38519743
-
Role of Artificial Intelligence in Identifying Vital Biomarkers with Greater Precision in Emergency Departments During Emerging Pandemics.Int J Mol Sci. 2025 Jan 16;26(2):722. doi: 10.3390/ijms26020722. Int J Mol Sci. 2025. PMID: 39859435 Free PMC article.
-
Lung Ultrasound in Critical Care and Emergency Medicine: Clinical Review.Adv Respir Med. 2023 May 17;91(3):203-223. doi: 10.3390/arm91030017. Adv Respir Med. 2023. PMID: 37218800 Free PMC article. Review.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous