Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Aug;132(2):183-91.
doi: 10.1002/jcp.1041320202.

Bicarbonate/chloride antiport in Vero cells: I. Evidence for both sodium-linked and sodium-independent exchange

Bicarbonate/chloride antiport in Vero cells: I. Evidence for both sodium-linked and sodium-independent exchange

T I Tønnessen et al. J Cell Physiol. 1987 Aug.

Abstract

The effect of bicarbonate on the ability of cells to regulate the internal pH after acid and alkali loads was studied. In the presence of Na+, the normalization of the internal pH after acid loads occurred more rapidly in the presence than in the absence of bicarbonate. DIDS (4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid) strongly inhibited the pH increase, whereas amiloride inhibited it to a lesser extent. The Na+-linked, bicarbonate-dependent pHi increase after an acid load was strongly reduced in cells depleted of Cl-. When cells were transferred to gluconate or mannitol balanced buffers containing bicarbonate, there was a rapid alkalinization of the cytosol, apparently due to influx of bicarbonate induced by chloride efflux. When the internal pH was below 7.0, the pH increase was much more rapid in the presence than in the absence of Na+, whereas at higher internal pH, there was no measurable effect of Na+. The ability of the cells to reduce the internal pH after an alkali load was increased in the presence of bicarbonate. The data indicate that both Na+-linked and Na+-independent bicarbonate/chloride exchange occur in Vero cells.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources