Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Aug;34(4):269-81.
doi: 10.1002/jcb.240340406.

Changes in surface glycopeptides after malignant transformation of rat liver cells and during the regression of hepatoma cells

Changes in surface glycopeptides after malignant transformation of rat liver cells and during the regression of hepatoma cells

B Chaumeton et al. J Cell Biochem. 1987 Aug.

Abstract

Normal liver cells, Zajdela's hepatoma cells, and regressing hepatoma cells were metabolically labeled with either radioactive glucosamine or mannose. Glycopeptides obtained by exhaustive pronase digestion of these cells were compared after fractionation by gel filtration on Bio-Gel P-6. Chemical analysis, affinity chromatography on immobilized lectins, alkaline treatment, and susceptibility toward endo-beta-N-acetylglucosaminidase and tunicamycin revealed dramatic changes in the glycopeptide patterns of transformed cells during the recovery of normal phenotype. The most prominent feature was the presence on the surface of hepatoma cells of a large glycopeptide, which was absent from normal liver cells and disappeared almost completely during the regression of hepatoma cells. This large glycopeptide had a Mr of 70,000, contained essentially O-glycosidically linked glycan chains, and did not result from a hypersialylation. N-glycosidically linked glycopeptides, high-mannose, and complex-type oligosaccharides were present in distinct proportions according to the differentiation state. Transformation of liver cells led to a reduction of high-mannose type oligosaccharides and an increase in the degree of branching of complex-type oligosaccharides. In addition, "bisected" glycopeptides were present only on hepatoma cells. The pattern of N-linked glycopeptides of normal liver cells was recovered during the regression of hepatoma cells. The origin of glycopeptide differences between normal and transformed cells and the evidence of a relation between carbohydrate changes, in particular the appearance of a large glycopeptide, and tumorigenicity are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources