Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Oct;38(10):2044-2050.
doi: 10.1016/j.arth.2022.10.003. Epub 2022 Oct 13.

Deep Learning Approach for Diagnosing Early Osteonecrosis of the Femoral Head Based on Magnetic Resonance Imaging

Affiliations
Review

Deep Learning Approach for Diagnosing Early Osteonecrosis of the Femoral Head Based on Magnetic Resonance Imaging

Xianyue Shen et al. J Arthroplasty. 2023 Oct.

Abstract

Background: The diagnosis of early osteonecrosis of the femoral head (ONFH) based on magnetic resonance imaging (MRI) is challenging due to variability in the surgeon's experience level. This study developed an MRI-based deep learning system to detect early ONFH and evaluated its feasibility in the clinic.

Methods: We retrospectively evaluated clinical MRIs of the hips that were performed in our institution from January 2019 to June 2022 and collected all MRIs diagnosed with early ONFH. An advanced convolutional neural network (CNN) was trained and optimized; then, the diagnostic performance of the CNN was evaluated according to its accuracy, sensitivity, and specificity. We also further compared the CNN's performance with that of orthopaedic surgeons.

Results: Overall, 11,061 images were retrospectively included in the present study and were divided into three datasets with ratio 7:2:1. The area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity of the CNN model for identifying early ONFH were 0.98, 98.4, 97.6, and 98.6%, respectively. In our review panel, the averaged accuracy, sensitivity, and specificity for identifying ONFH were 91.7, 87.0, and 94.1% for attending orthopaedic surgeons; 87.1, 84.0, and 89.3% for resident orthopaedic surgeons; and 97.1, 96.0, and 97.9% for deputy chief orthopaedic surgeons, respectively.

Conclusion: The deep learning system showed a comparable performance to that of deputy chief orthopaedic surgeons in identifying early ONFH. The success of deep learning diagnosis of ONFH might be conducive to assisting less-experienced surgeons, especially in large-scale medical imaging screening and community scenarios lacking consulting experts.

Keywords: artificial intelligence; deep learning; magenetic resonance imaging; musculoskeletal disorder; osteonecrosis of the femoral head.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources