Fluid shear stress promotes periodontal ligament cells proliferation via p38-AMOT-YAP
- PMID: 36244032
- PMCID: PMC11802950
- DOI: 10.1007/s00018-022-04591-w
Fluid shear stress promotes periodontal ligament cells proliferation via p38-AMOT-YAP
Abstract
Periodontal ligament (PDL) cells are a promising tool for periodontal regeneration therapy. Achieving a sufficient number of PDL cells is essential to PDL regeneration. In our study, appropriate flow shear stress (FSS, 1-6 dyn/cm2) promotes the proliferation of PDL cells. FSS remodels cytoskeleton and focal adhesion in a duration-dependent manner. FSS induces PDL cells to form the actin cap within 10 min, flattens the nuclei, and increases the nuclear pore size, which promotes nuclear translocation of Yes-associated protein (YAP). FSS activates p38, which plays a dual function in YAP regulation. p38 regulates the phosphorylation of Akt and cofilin, as well as induced F-actin polymerization to induce YAP activity. In addition, p38 inhibits pLATS and consecutively regulates angiomotin (AMOT) and YAP phosphorylation. AMOT competitively binds to F-actin and YAP to participate in FSS-mediated YAP nuclear translocation and cell proliferation. Taken collectively, our results provide mechanistic insights into the role of p38-AMOT-YAP in FSS-mediated PDL cells proliferation and indicate potential applications in dental regenerative medicine.
Keywords: Biomechanics; LINC; Mechanotransduction; Nuclear changes; Nuclear-cytoplasmic translocation.
© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Conflict of interest statement
The authors declare that there are no conflicts of interest regarding the material discussed in the manuscript.
Figures







Similar articles
-
The cytoskeleton dynamics-dependent LINC complex in periodontal ligament stem cells transmits mechanical stress to the nuclear envelope and promotes YAP nuclear translocation.Stem Cell Res Ther. 2024 Sep 6;15(1):284. doi: 10.1186/s13287-024-03884-0. Stem Cell Res Ther. 2024. PMID: 39243052 Free PMC article.
-
The microRNA 132 regulates fluid shear stress-induced differentiation in periodontal ligament cells through mTOR signaling pathway.Cell Physiol Biochem. 2014;33(2):433-45. doi: 10.1159/000358624. Epub 2014 Feb 11. Cell Physiol Biochem. 2014. PMID: 24556727 Clinical Trial.
-
LRP6/filamentous-actin signaling facilitates osteogenic commitment in mechanically induced periodontal ligament stem cells.Cell Mol Biol Lett. 2023 Jan 24;28(1):7. doi: 10.1186/s11658-023-00420-5. Cell Mol Biol Lett. 2023. PMID: 36694134 Free PMC article.
-
Angiomotin Family Members: Oncogenes or Tumor Suppressors?Int J Biol Sci. 2017 Jun 1;13(6):772-781. doi: 10.7150/ijbs.19603. eCollection 2017. Int J Biol Sci. 2017. PMID: 28656002 Free PMC article. Review.
-
Dental stem cell dynamics in periodontal ligament regeneration: from mechanism to application.Stem Cell Res Ther. 2024 Oct 31;15(1):389. doi: 10.1186/s13287-024-04003-9. Stem Cell Res Ther. 2024. PMID: 39482701 Free PMC article. Review.
Cited by
-
Effect of Mechanical Force Stress on the Inflammatory Response in Human Periodontal Ligament Cells.Int Dent J. 2025 Feb;75(1):117-126. doi: 10.1016/j.identj.2024.12.001. Epub 2024 Dec 26. Int Dent J. 2025. PMID: 39730290 Free PMC article. Review.
-
Role of angiomotin family members in human diseases (Review).Exp Ther Med. 2024 Apr 23;27(6):258. doi: 10.3892/etm.2024.12546. eCollection 2024 Jun. Exp Ther Med. 2024. PMID: 38766307 Free PMC article. Review.
-
Shear stress-triggered adenosine triphosphate regulates angiogenic properties of human periodontal ligament stem cells.Sci Rep. 2025 Jul 22;15(1):26589. doi: 10.1038/s41598-025-12323-w. Sci Rep. 2025. PMID: 40695923 Free PMC article.
-
Inhibition of Mitochondrial Fission Reverses Simulated Microgravity-Induced Osteoblast Dysfunction by Enhancing Mechanotransduction and Epigenetic Modification.Research (Wash D C). 2025 Feb 4;8:0602. doi: 10.34133/research.0602. eCollection 2025. Research (Wash D C). 2025. PMID: 39906534 Free PMC article.
-
Exploring the mechanical and biological interplay in the periodontal ligament.Int J Oral Sci. 2025 Apr 2;17(1):23. doi: 10.1038/s41368-025-00354-y. Int J Oral Sci. 2025. PMID: 40169537 Free PMC article. Review.
References
-
- Pihlstrom BL, Michalowicz BS, Johnson NW (2005) Periodontal diseases. Lancet 366:1809–1820. 10.1016/S0140-6736(05)67728-8 - PubMed
-
- Kinane DF, Stathopoulou PG, Papapanou PN (2017) Periodontal diseases. Nat Rev Dis Primers 22:17038–17049. 10.1038/nrdp.2017.38 - PubMed
-
- Chen FM, Sun HH, Lu H, Yu Q (2012) Stem cell-delivery therapeutics for periodontal tissue regeneration. Biomaterials 33:6320–6344. 10.1016/j.biomaterials.2012.05.048 - PubMed
-
- Iwata T, Yamato M, Zhang Z et al (2010) Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use. J Clin Periodontol 37:1088–1099. 10.1111/j.1600-051X.2010.01597.x - PubMed
-
- Nakdilok K, Langsa-ard S, Krisanaprakornkit S et al (2020) Enhancement of human periodontal ligament by preapplication of orthodontic loading. Am J Orthod Dentofacial Orthop 157:186–193. 10.1016/j.ajodo.2019.03.019 - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous