Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov;69(9):544-555.
doi: 10.1016/j.redare.2021.09.006. Epub 2022 Oct 13.

Pre-clinical validation of a turbine-based ventilator for invasive ventilation-The ACUTE-19 ventilator

Affiliations

Pre-clinical validation of a turbine-based ventilator for invasive ventilation-The ACUTE-19 ventilator

J M Alonso-Iñigo et al. Rev Esp Anestesiol Reanim (Engl Ed). 2022 Nov.

Abstract

Background: The Severe Acute Respiratory Syndrome (SARS)-Coronavirus 2 (CoV-2) pandemic pressure on healthcare systems can exhaust ventilator resources, especially where resources are restricted. Our objective was a rapid preclinical evaluation of a newly developed turbine-based ventilator, named the ACUTE-19, for invasive ventilation.

Methods: Validation consisted of (a) testing tidal volume (VT) delivery in 11 simulated models, with various resistances and compliances; (b) comparison with a commercial ventilator (VIVO-50) adapting the United Kingdom Medicines and Healthcare products Regulatory Agency-recommendations for rapidly manufactured ventilators; and (c) in vivo testing in a sheep before and after inducing acute respiratory distress syndrome (ARDS) by saline lavage.

Results: Differences in VT in the simulated models were marginally different (largest difference 33ml [95%-confidence interval (CI) 31-36]; P<.001ml). Plateau pressure (Pplat) was not different (-0.3cmH2O [95%-CI -0.9 to 0.3]; P=.409), and positive end-expiratory pressure (PEEP) was marginally different (0.3 cmH2O [95%-CI 0.2 to 0.3]; P<.001) between the ACUTE-19 and the commercial ventilator. Bland-Altman analyses showed good agreement (mean bias, -0.29, [limits of agreement, 0.82 to -1.42], and mean bias 0.56 [limits of agreement, 1.94 to -0.81], at a Pplat of 15 and 30cmH2O, respectively). The ACUTE-19 achieved optimal oxygenation and ventilation before and after ARDS induction.

Conclusions: The ACUTE-19 performed accurately in simulated and animal models yielding a comparable performance with a VIVO-50 commercial device. The acute 19 can provide the basis for the development of a future affordable commercial ventilator.

Antecedentes: La pandemia producida por el Síndrome Respiratorio Agudo Severo (SARS) por Coronavirus 2 (CoV-2) puede agotar los recursos sanitarios, especialmente de respiradores, en situaciones de escasez de recursos sanitarios. Nuestro objetivo fue realizar una evaluación preclínica rápida de un prototipo de respirador de turbina para la ventilación invasiva denominado ACUTE-19.

Métodos: La validación consistió en (a) evaluación de la administración de un volumen corriente (VT) en 11 modelos pulmonares simulados, con diversas resistencias y compliancias; (b) comparación con un ventilador comercial (VIVO-50) adaptando las recomendaciones de la Agencia Reguladora de Medicamentos y Productos Sanitarios del Reino Unido para ventiladores de fabricación rápida; y (c) realización pruebas in vivo en una oveja antes y después de inducir el síndrome de distrés respiratorio agudo (SDRA) mediante lavado salino.

Resultados: Las diferencias de VT en los modelos simulados fueron mínimamente diferentes (la mayor diferencia fue de 33 ml [intervalo de confianza (IC) del 95%: 31 a 36]; P < ,001 ml). La presión de meseta (Pplat) no fue diferente (−0,3 cmH2O [IC del 95%: −0,9 a 0,3]; P = ,409), y la presión positiva al final de la espiración (PEEP) fue levemente diferente (0,3 cmH2O [IC del 95%: 0,2 a 0,3]; P < ,001) comparando el ACUTE-19 y el ventilador comercial. El análisis de Bland-Altman mostró una buena concordancia (bias medio, −0,29, [límites de concordancia, 0,82 a −1,42], y bias medio 0,56 [límites de concordancia, 1,94 a −0,81], a una Pplat de 15 y 30 cmH2O, respectivamente). El ACUTE-19 consiguió una oxigenación y ventilación óptimas antes y después de la inducción del SDRA en el modelo animal.

Conclusiones: El ACUTE-19 se comportó con precisión en los modelos simulados y animales, con un rendimiento comparable al del dispositivo comercial VIVO-50. El ACUTE-19 puede servir de base para el desarrollo de un futuro ventilador comercial asequible.

Keywords: Aumento de la capacidad médica; Bench study; COVID-19; Estudio de banco; Mechanical ventilation; Medical capacity surge; Rendimiento del ventilador; SARS-CoV-2; Ventilación mecánica; Ventilator performance.

PubMed Disclaimer

Figures

Figure 1
Figure 1
ACUTE-19 ventilator prototype. A; Right: front view. Left: internal view showing the main components. B: touchscreen settings. See text for more details.
Figure 2
Figure 2
Lung simulator models. LM: lung model; C: compliance; Rp: resistance.
Figure 3
Figure 3
Simulator test results. Median and interquartile ranges of VT (Panel A), airway pressures (Panel B) and compliance (Panel C) recorded over LMs tested. LM: lung model; VT: tidal volume; CI: confidence interval; DP: driving pressure; PEEP: positive end–expiratory pressure; C: compliance.
Figure 4
Figure 4
Bland Altman limits of agreement and histogram plot comparing ACUTE–19 and VIVO–50. Panel A and B: plateau pressure of 15 cmH2O; Panel C and D: plateau pressure of 30 cmH2O. Panel E and F: PEEP of 5 cmH2O. Panel G and H: PEEP of 10 cmH2O. Panel I and L: PEEP of 15 cmH2O. Bold dashed lines mean bias and limits of agreement and 95% confidence intervals.
Figure 5
Figure 5
Animal test results. Values are reported as median and interquartile range. A: airway pressure, B: volumetric capnography and arterial CO2, C: arterial O2, D: tidal volume and dead space. DP: driving pressure; PEEP: Positive end–expiratory pressure; PACO2: CO2 alveolar partial pressure; PECO2: expiration fraction of CO2; VCO2: volume of CO2 produced by respiration; VDphys: physiological dead space; VDalv: alveolar dead space; VDaw: airway dead space; VTalv: alveolar tidal volume; PaO2: arterial O2 partial pressure; PaFiO2: PaO2 and FiO2 ratio; PaCO2: arterial CO2 partial pressure.

References

    1. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239–1242. - PubMed
    1. Grasselli G., Zangrillo A., Zanella A., Antonelli M., Cabrini L., Castelli A., et al. COVID-19 Lombardy ICU Network. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323:1574–1581. - PMC - PubMed
    1. Richardson S., Hirsch J.S., Narasimhan M., Crawford J.M., McGinn T., Davidson K.W., et al. The Northwell COVID-19 Research Consortium. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalised with COVID-19 in the New York City area. JAMA. 2020;10022:E1–8. - PMC - PubMed
    1. Li R., Rivers C., Tan Q., Murray M.B., Toner E., Lipsitch M. Estimated demand for US hospital inpatient and intensive care unit beds for patients with COVID-19 based on comparisons with Wuhan and Guangzhou, China. JAMA Netw Open. 2020;3 - PMC - PubMed
    1. Rascado P, Ballesteros MA, Bodí MA, Carrasco LF, Castañedos Á. Plan de contingencia para los servicios de Medicina Intensiva frente a la pandemia COVID-19. Madrid: SEMICYUC; 2020. p. 73 [accessed 13 Sep 2020]. Available from: https://www.semicyuc.org/covid19_files/Plan_de_Contingencia_COVID-19.pdf.