Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Aug 1;262(1):141-58.
doi: 10.1002/cne.902620111.

Retinal ganglion cells projecting to the accessory optic system in the rat

Retinal ganglion cells projecting to the accessory optic system in the rat

J F Dann et al. J Comp Neurol. .

Abstract

The present data identify the distribution and morphological features of a homogeneous group of rat retinal ganglion cells. These cells were labelled after injection of either horseradish peroxidase or a fluorescent tracer, Fast Blue, into the medial terminal nucleus (MTN) of the accessory optic system. After retrograde fluorescent labelling, MTN-projecting retinal ganglion cells were intracellularly injected with Lucifer Yellow to reveal their complete dendritic morphology. There were on average 1,750 MTN-projecting cells fairly evenly distributed over the entire retinal ganglion cell layer. Their density ranged from 40-49 cells/mm2 in superior retina to 10-19 cells/mm2 towards the peripheral regions of both inferior and superior retina. The area of highest density formed a nasal-temporal band suggestive of a visual streak. Soma diameters ranged from 8.7 to 14.5 micron centrally and from 9.9 to 17.1 microns peripherally. Maximal dendritic field diameter ranged from 431 to 644 micron and averaged 516 micron with no obvious eccentricity dependence. The majority of MTN-projecting cells were bistratified. Dendrites stratified predominantly in the inner sublamina of the inner plexiform layer (IPL) with a varying number of branches from the remaining dendrites contained within the outer IPL, both strata presumably corresponding to the electrophysiologically determined on-off dichotomy. Cells projecting to the MTN were characterised by higher-order dendritic branching patterns that resulted in a dense dendritic tree with minor dendritic overlap. The slender dendrites had a beaded appearance and displayed spiny protrusions. The dendritic coverage of 5-6, stratification pattern, and overall morphological appearance of rat MTN-projecting cells renders them suitable candidates for on-direction--selective cells shown electrophysiologically to be linked with the MTN of the accessory optic system.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources