The four Rs and crystal structure analysis: reliability, reproducibility, replicability and reusability
- PMID: 36249510
- PMCID: PMC9533758
- DOI: 10.1107/S1600576722007208
The four Rs and crystal structure analysis: reliability, reproducibility, replicability and reusability
Abstract
Within science, of which crystallography is a key part, there are questions posed to all fields that challenge the trust in results. The US National Academies of Sciences, Engineering and Medicine published a thorough report in 2019 on the Reproducibility and Replicability of Science: replicability being where a totally new study attempts to confirm if a phenomenon can be seen independently of another study. Data reuse is a key term in the FAIR data accord [Wilkinson et al. (2016). Sci. Data, 3, 160018], where the acronym FAIR means findable, accessible, interoperable and reusable. In the social sciences, the acronym FACT (namely fairness, accuracy, confidentiality and transparency) has emerged, the idea being that data should be FACTual to ensure trust [van der Aalst et al. (2017). Bus. Inf. Syst. Eng. 59, 311-313]. A distinction also must be made between accuracy and precision; indeed, the authors' lectures at the European Crystallography School ECS6 independently emphasized the need for use of other methods as well as crystal structure analysis to establish accuracy in biological and chemical/material functional contexts. The efforts by disparate science communities to introduce new terms to ensure trust have merit for discussion in crystallographic teaching commissions and possible adoption by crystallographers too.
Keywords: reliability; replicability; reproducibility; reuse; trust.
© Helliwell and Massera 2022.
Figures

Similar articles
-
FACT and FAIR with Big Data allows objectivity in science: The view of crystallography.Struct Dyn. 2019 Oct 25;6(5):054306. doi: 10.1063/1.5124439. eCollection 2019 Sep. Struct Dyn. 2019. PMID: 31673568 Free PMC article.
-
Enhancing Reuse of Data and Biological Material in Medical Research: From FAIR to FAIR-Health.Biopreserv Biobank. 2018 Apr;16(2):97-105. doi: 10.1089/bio.2017.0110. Epub 2018 Jan 23. Biopreserv Biobank. 2018. PMID: 29359962 Free PMC article. Review.
-
A data reusability assessment in the nanosafety domain based on the NSDRA framework followed by an exploratory quantitative structure activity relationships (QSAR) modeling targeting cellular viability.NanoImpact. 2023 Jul;31:100475. doi: 10.1016/j.impact.2023.100475. Epub 2023 Jul 7. NanoImpact. 2023. PMID: 37423508
-
Data Sharing and Reuse: A Method by the AIRR Community.Methods Mol Biol. 2022;2453:447-476. doi: 10.1007/978-1-0716-2115-8_23. Methods Mol Biol. 2022. PMID: 35622339 Free PMC article.
-
Reproducibility and Replicability in Science.Washington (DC): National Academies Press (US); 2019 May 7. Washington (DC): National Academies Press (US); 2019 May 7. PMID: 31596559 Free Books & Documents. Review.
Cited by
-
The evolution of raw data archiving and the growth of its importance in crystallography.IUCrJ. 2024 Jul 1;11(Pt 4):464-475. doi: 10.1107/S205225252400455X. IUCrJ. 2024. PMID: 38864497 Free PMC article.
-
CSD Communications of the Cambridge Structural Database.IUCrJ. 2023 Jan 1;10(Pt 1):6-15. doi: 10.1107/S2052252522010545. IUCrJ. 2023. PMID: 36598498 Free PMC article.
-
Powder diffraction data beyond the pattern: a practical review.J Appl Crystallogr. 2025 Jul 22;58(Pt 4):1085-1105. doi: 10.1107/S1600576725004728. eCollection 2025 Aug 1. J Appl Crystallogr. 2025. PMID: 40765977 Free PMC article. Review.
-
Raw diffraction data and reproducibility.Struct Dyn. 2024 Feb 14;11(1):011301. doi: 10.1063/4.0000232. eCollection 2024 Jan. Struct Dyn. 2024. PMID: 38361661 Free PMC article. Review.
-
Golden oldies: ten crystallography articles that we think must be read.Acta Crystallogr E Crystallogr Commun. 2023 Jun 6;79(Pt 7):580-591. doi: 10.1107/S2056989023004619. eCollection 2023 Jun 1. Acta Crystallogr E Crystallogr Commun. 2023. PMID: 37601583 Free PMC article.
References
-
- Aalst, W. M. P. van der, Bichler, M. & Heinzl, A. (2017). Bus. Inf. Syst. Eng. 59, 311–313.
-
- Aragao, D., Brandao-Neto, J., Carbery, A., Crawshaw, A., Dias, A., Douangamath, A., Dunnett, L., Fearon, D., Flaig, R., Gehrtz, P., Hall, D., Krojer, T., London, N., Lukacik, P., Mazzorana, M., McAuley, K., Owen, D., Powell, A., Reddi, R., Resnick, E., Skyner, R., Snee, M., Strain-Damerell, C., Stuart, D., von Delft, F., Walsh, M. Wild, C., Williams, M. & Winter, G. (2020). Raw Diffraction Data For Structure of SARS-CoV-2 Main Protease With Z44592329 (ID: mpro-x0434/PDB: 5R83), http://doi.org/10.5281/zenodo.3730610.
-
- Balestri, D., Mazzeo, P. P., Perrone, R., Fornari, F., Bianchi, F., Careri, M., Bacchi, A. & Pelagatti, P. (2021). Angew. Chem. Int. Ed. 60, 10194–10202. - PubMed
-
- Barber, B. (1987). Minerva, 25, 123–134.
LinkOut - more resources
Full Text Sources