Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct 17;12(1):96.
doi: 10.1186/s13613-022-01071-z.

Outcomes of mild-to-moderate postresuscitation shock after non-shockable cardiac arrest and association with temperature management: a post hoc analysis of HYPERION trial data

Affiliations

Outcomes of mild-to-moderate postresuscitation shock after non-shockable cardiac arrest and association with temperature management: a post hoc analysis of HYPERION trial data

Ines Ziriat et al. Ann Intensive Care. .

Abstract

Background: Outcomes of postresuscitation shock after cardiac arrest can be affected by targeted temperature management (TTM). A post hoc analysis of the "TTM1 trial" suggested higher mortality with hypothermia at 33 °C. We performed a post hoc analysis of HYPERION trial data to assess potential associations linking postresuscitation shock after non-shockable cardiac arrest to hypothermia at 33 °C on favourable functional outcome.

Methods: We divided the patients into groups with vs. without postresuscitation (defined as the need for vasoactive drugs) shock then assessed the proportion of patients with a favourable functional outcome (day-90 Cerebral Performance Category [CPC] 1 or 2) after hypothermia (33 °C) vs. controlled normothermia (37 °C) in each group. Patients with norepinephrine or epinephrine > 1 µg/kg/min were not included.

Results: Of the 581 patients included in 25 ICUs in France and who did not withdraw consent, 339 had a postresuscitation shock and 242 did not. In the postresuscitation-shock group, 159 received hypothermia, including 14 with a day-90 CPC of 1-2, and 180 normothermia, including 10 with a day-90 CPC of 1-2 (8.81% vs. 5.56%, respectively; P = 0.24). After adjustment, the proportion of patients with CPC 1-2 also did not differ significantly between the hypothermia and normothermia groups (adjusted hazards ratio, 1.99; 95% confidence interval, 0.72-5.50; P = 0.18). Day-90 mortality was comparable in these two groups (83% vs. 86%, respectively; P = 0.43).

Conclusions: After non-shockable cardiac arrest, mild-to-moderate postresuscitation shock at intensive-care-unit admission did not seem associated with day-90 functional outcome or survival. Therapeutic hypothermia at 33 °C was not associated with worse outcomes compared to controlled normothermia in patients with postresuscitation shock. Trial registration ClinicalTrials.gov, NCT01994772.

Keywords: Cardiac arrest; In-hospital; Postresuscitation shock; Targeted temperature management; Therapeutic hypothermia.

PubMed Disclaimer

Conflict of interest statement

JB Lascarrou has received reimbursement for travel expenses from Zoll (Voisin Le Bretonneux, France) and BD (Le Pont de Claix, France). JP Frat has received personal fees for lectures, travel expense coverage to attend scientific meetings from Fisher and Paykel Healthcare, and a grant for a randomized controlled trial; personal fees as a member of a scientific board, and travel expense coverage to attend scientific meetings from SOS Oxygène. None of the other authors has any conflict of interest to declare.

Figures

Fig. 1
Fig. 1
Probability of survival to 90 days according to temperature allocated in the subgroup of patients with PRS. HR: hazard ratio; 95% CI: 95% confidence interval. PRS: postresuscitation shock
Fig. 2
Fig. 2
Changes over time in physiological variables according to target temperature in the patients with postresuscitation shock (PRS) at admission. SOFA: Sequential Organ Failure Assessment. The lactate level was determined at admission to the intensive care unit

References

    1. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369:2197–2206. doi: 10.1056/NEJMoa1310519. - DOI - PubMed
    1. Lascarrou JB, Merdji H, Le Gouge A, Colin G, Grillet G, Girardie P, et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N Engl J Med. 2019 doi: 10.1056/NEJMoa1906661. - DOI - PubMed
    1. Lemiale V, Dumas F, Mongardon N, Giovanetti O, Charpentier J, Chiche J-D, et al. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013;39:1972–1980. doi: 10.1007/s00134-013-3043-4. - DOI - PubMed
    1. Huang C-H, Tsai M-S, Ong HN, Chen W, Wang C-H, Chang W-T, et al. Association of hemodynamic variables with in-hospital mortality and favorable neurological outcomes in post-cardiac arrest care with targeted temperature management. Resuscitation. 2017;120:146–152. doi: 10.1016/j.resuscitation.2017.07.009. - DOI - PubMed
    1. Hästbacka J, Kirkegaard H, Søreide E, Taccone FS, Rasmussen BS, Storm C, et al. Severe or critical hypotension during post cardiac arrest care is associated with factors available on admission—a post hoc analysis of the TTH48 trial. J Crit Care. 2021;61:186–190. doi: 10.1016/j.jcrc.2020.10.026. - DOI - PubMed

Associated data

LinkOut - more resources