Defined Human Leukemic CD34+ Liquid Cultures to Study HDAC/Transcriptional Repressor Complexes
- PMID: 36255616
- DOI: 10.1007/978-1-0716-2788-4_3
Defined Human Leukemic CD34+ Liquid Cultures to Study HDAC/Transcriptional Repressor Complexes
Abstract
Defined human primary cell model systems with growth dependence on oncogenes are highly requested to investigate tumor pathogenesis and to validate pharmacological inhibitors that specifically target oncoproteins and their executing protein complex partners. In acute myeloid leukemia (AML), transcription factors such as RUNX1 and MLL1, which are important for normal blood cell development, frequently harbor mutations including chromosomal translocations with other coding genes, resulting in tumor-promoting gain-of-function fusion proteins. These oncoproteins completely modify transcriptional programs, thereby inducing malignant cell phenotypes. A common theme of the chimeric gene products is their physical interaction with a variety of chromatin-modifying effector molecules, including histone acetyltransferases (HATs) and histone deacetylases (HDACs). These aberrant multiprotein machineries disturb gene expression and promote malignant cell growth. In this chapter, we briefly summarize the current understanding regarding AML-associated oncogene-driven human CD34+ blood progenitor cell expansion in ex vivo liquid cultures. We provide a step-by-step protocol to establish oncogene-induced human CD34+ blood progenitor cell cultures suitable to analyze the impact of transcriptional repressor/HDAC activity in these human AML cell models.
Keywords: CD34+; Histone deacetylase; Human blood progenitor; MLL; Progenitor expansion; RUNX1.
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Similar articles
-
Deciphering Acute Myeloid Leukemia Associated Transcription Factors in Human Primary CD34+ Hematopoietic Stem/Progenitor Cells.Cells. 2023 Dec 29;13(1):78. doi: 10.3390/cells13010078. Cells. 2023. PMID: 38201282 Free PMC article. Review.
-
Compatibility of RUNX1/ETO fusion protein modules driving CD34+ human progenitor cell expansion.Oncogene. 2019 Jan;38(2):261-272. doi: 10.1038/s41388-018-0441-7. Epub 2018 Aug 9. Oncogene. 2019. PMID: 30093631
-
AML-associated translocation products block vitamin D(3)-induced differentiation by sequestering the vitamin D(3) receptor.Cancer Res. 2002 Dec 1;62(23):7050-8. Cancer Res. 2002. PMID: 12460926
-
Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t(8;21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway.Blood. 2013 Jan 17;121(3):499-509. doi: 10.1182/blood-2012-07-444729. Epub 2012 Dec 6. Blood. 2013. PMID: 23223432
-
AML-1-ETO-Mediated erythroid inhibition: new paradigms for differentiation blockade by a leukemic fusion protein.Crit Rev Eukaryot Gene Expr. 2005;15(3):207-16. doi: 10.1615/critreveukargeneexpr.v15.i3.30. Crit Rev Eukaryot Gene Expr. 2005. PMID: 16390317 Review.
Cited by
-
Deciphering Acute Myeloid Leukemia Associated Transcription Factors in Human Primary CD34+ Hematopoietic Stem/Progenitor Cells.Cells. 2023 Dec 29;13(1):78. doi: 10.3390/cells13010078. Cells. 2023. PMID: 38201282 Free PMC article. Review.
-
Efficient Chimeric Antigen Receptor T-Cell Generation Starting with Leukoreduction System Chambers of Thrombocyte Apheresis Sets.Transfus Med Hemother. 2023 Aug 30;51(2):111-118. doi: 10.1159/000532130. eCollection 2024 Apr. Transfus Med Hemother. 2023. PMID: 38584695 Free PMC article.
References
-
- Miller CA, Wilson RK, Ley TJ (2013) Genomic landscapes and clonality of de novo AML. N Engl J Med 369(15):1473. https://doi.org/10.1056/NEJMc1308782 - DOI - PubMed - PMC
-
- Morita K, Wang F, Jahn K, Hu T, Tanaka T, Sasaki Y, Kuipers J, Loghavi S, Wang SA, Yan Y, Furudate K, Matthews J, Little L, Gumbs C, Zhang J, Song X, Thompson E, Patel KP, Bueso-Ramos CE, DiNardo CD, Ravandi F, Jabbour E, Andreeff M, Cortes J, Bhalla K, Garcia-Manero G, Kantarjian H, Konopleva M, Nakada D, Navin N, Beerenwinkel N, Futreal PA, Takahashi K (2020) Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun 11(1):5327. https://doi.org/10.1038/s41467-020-19119-8 - DOI - PubMed - PMC
-
- Gilliland DG, Griffin JD (2002) The roles of FLT3 in hematopoiesis and leukemia. Blood 100(5):1532–1542. https://doi.org/10.1182/blood-2002-02-0492 - DOI - PubMed
-
- Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Grignani F, Lazar MA, Minucci S, Pelicci PG (1998) Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391(6669):815–818. https://doi.org/10.1038/35901 - DOI - PubMed
-
- Racanicchi S, Maccherani C, Liberatore C, Billi M, Gelmetti V, Panigada M, Rizzo G, Nervi C, Grignani F (2005) Targeting fusion protein/corepressor contact restores differentiation response in leukemia cells. EMBO J 24(6):1232–1242. https://doi.org/10.1038/sj.emboj.7600593 - DOI - PubMed - PMC
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical