Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec;79(12):2854-2866.
doi: 10.1161/HYPERTENSIONAHA.122.19103. Epub 2022 Oct 20.

S-Nitrosylation-Mediated Reduction of CaV1.2 Surface Expression and Open Probability Underlies Attenuated Vasoconstriction Induced by Nitric Oxide

Affiliations

S-Nitrosylation-Mediated Reduction of CaV1.2 Surface Expression and Open Probability Underlies Attenuated Vasoconstriction Induced by Nitric Oxide

Zhenyu Hu et al. Hypertension. 2022 Dec.

Abstract

Background: L-type CaV1.2 calcium channel, the primary gateway for Ca2+ influx in smooth muscles, is widely regulated by multiple posttranslational modifications, such as protein kinase-mediated phosphorylation and nitric oxide-induced S-nitrosylation. However, the effect of S-nitrosylation on CaV1.2 channel function and its role in arterial contractility are not well understood.

Methods: Electrophysiological recordings, Ca2+ and confocal imaging, and biochemical assays were used to functionally characterize S-nitrosylated CaV1.2 channels in vitro, while pressure myography and tail-cuff blood pressure measurement were conducted to evaluate the physiological effects of CaV1.2 S-nitrosylation ex vivo and in vivo.

Results: S-nitrosylation significantly reduced the CaV1.2 current density by promoting lysosomal degradation that leads to decreased levels of total and surface CaV1.2 channel proteins in a CaVβ-independent manner and reducing the open probability of CaV1.2 channel. Mechanistically, the Cys1180 and Cys1280 residues within CaV1.2 channel have been determined as the molecular targets for S-nitrosylation as substitution of either Cys1180 or Cys1280 for serine resulted in substantial reduction of S-nitrosylation levels. Of note, CaV1.2 S-nitrosylation levels were significantly reduced in arteries isolated from both spontaneously hypertensive rats and patients with pulmonary hypertension. Moreover, mouse resistance arteries incubated with S-nitrosocysteine displayed much lower contractility and spontaneously hypertensive rats injected with S-nitrosocysteine also showed significantly reduced blood pressure, suggesting that reduced S-nitrosylation contributes to the upregulation of CaV1.2 channel activity in hypertensive arteries.

Conclusions: This study provides strong evidence that S-nitrosylation-mediated downregulation of CaV1.2 channels is via 2 distinctive mechanisms and the findings offer potential pathways for therapeutic inventions in hypertension.

Keywords: CaV1.2 channel; S-nitrosylation; hypertension; lysosome; open probability.

PubMed Disclaimer

Publication types