Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb;30(8):20934-20958.
doi: 10.1007/s11356-022-23617-1. Epub 2022 Oct 20.

Distribution, sources, and pollution levels of toxic metal(loid)s in an urban river (Ichamati), Bangladesh using SOM and PMF modeling with GIS tool

Affiliations

Distribution, sources, and pollution levels of toxic metal(loid)s in an urban river (Ichamati), Bangladesh using SOM and PMF modeling with GIS tool

Md Nasiruddin et al. Environ Sci Pollut Res Int. 2023 Feb.

Abstract

Indexical assessment coupled with a self-organizing map (SOM) and positive matrix factorization (PMF) modeling of toxic metal(loid)s in sediment and water of the aquatic environment provides valuable information from the environmental management perspective. However, in northwest Bangladesh, indexical and modeling assessments of toxic metal(loid)s in surface water and sediment are still rare. Toxic metal(loid)s were measured in sediment and surface water from an urban polluted river (Ichamati) in northwest Bangladesh using an atomic absorption spectrophotometer to assess distribution, pollution levels, sources, and potential environmental risks to the aquatic environment. The mean concentrations (mg/kg) of metal(loid)s in water are as follows: Fe (871) > Mn (382) > Cr (72.4) > Zn (34.2) > Co (20.8) > Pb (17.6) > Ni (16.7) > Ag (14.9) > As (9.0) > Cu (5.63) > Cd (2.65), while in sediment, the concentration follows the order, Fe (18,725) > Mn (551) > Zn (213) > Cu (47.6) > Cr (30.2) > Ni (24.2) > Pb (23.8) > Co (9.61) > As (8.23) > Cd (0.80) > Ag (0.60). All metal concentrations were within standard guideline values except for Cr and Pb for water and Cd, Zn, Cu, Pb, and As for sediment. The outcomes of eco-environmental indices, including contamination and enrichment factors and geo-accumulation index, differed spatially, indicating that most of the sediment sites were moderately to highly polluted by Cd, Zn, and As. Cd and Zn content can trigger ecological risks. The positive matrix factorization (PMF) model recognized three probable sources of sediment, i.e., natural source (49.39%), industrial pollution (19.72%), and agricultural source (30.92%), and three possible sources of water, i.e., geogenic source (45.41%), industrial pollution (22.88%), and industrial point source (31.72%), respectively. SOM analysis identified four spatial patterns, e.g., Fe-Mn-Ag, Cd-Cu, Cr-Pb-As-Ni, and Zn-Co in water and three patterns, e.g., Mn-Co-Ni-Cr, Cd-Cu-Pb-Zn, and As-Fe-Ag in sediment. The spatial distribution of entropy water quality index values shows that the southwestern area possesses "poor" quality water. Overall, the levels of metal(loid) pollution in the investigated river surpassed a critical threshold, which might have serious consequences for the river's aquatic biota and human health in the long run.

Keywords: Ichamati River; Northwest Bangladesh; PMF; SOM; Source apportionment; Toxic elements.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136(1–3):227–238. https://doi.org/10.1007/s10661-007-9678-2 - DOI
    1. Ahmed FT, Khan AHAN, Khan R, Saha SK, Alam FA, Dafader NC, Sultana S, Elius IB, Mamun SA (2021) Characterization of arsenic contaminated groundwater from central Bangladesh: irrigation feasibility and preliminary health risks assessment. Environ Nanotechnol Monit Manag 14:100433. https://doi.org/10.1016/j.enmm.2021.100433 - DOI
    1. Akinci G, Guven DE, Ugurlu SK (2013) Assessing pollution in Izmir Bay from rivers in western Turkey: heavy metals. Environ Sci Process Impacts 15(12):2252–2262 - DOI
    1. Ali MM et al (2016) Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ Nanotechnol Monit Manag 5:27–35
    1. Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. https://doi.org/10.1155/2019/6730305 - DOI

LinkOut - more resources