Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 27;12(42):27281-27291.
doi: 10.1039/d2ra04739j. eCollection 2022 Sep 22.

Acid-controlled multicomponent selective synthesis of 2,4,6-triaryl pyridines and pyrimidines by using hexamethyldisilazane as a nitrogen source under microwave irradiation

Affiliations

Acid-controlled multicomponent selective synthesis of 2,4,6-triaryl pyridines and pyrimidines by using hexamethyldisilazane as a nitrogen source under microwave irradiation

Chieh-Kai Chan et al. RSC Adv. .

Abstract

An efficient and general protocol for the synthesis of functionalized 2,4,6-triaryl pyridines and pyrimidines was developed from commercially available aromatic ketones, aldehydes and hexamethyldisilazane (HMDS) as a nitrogen source under microwave irradiation. In this multicomponent synthetic route, Lewis acids play an important role in selectively synthesizing six-membered heterocycles, including pyridines (1N) and pyrimidines (2N), by involving [2 + 1 + 2 + 1] or [2 + 1 + 1 + 1 + 1] annulated processes.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Scheme 1
Scheme 1. Synthesis of 2,4,6-triarylpyrimidines.
Scheme 2
Scheme 2. Selective synthesis of pyridines and pyrimidines.
Scheme 3
Scheme 3. Synthesis of compound 2av and 2ua.
Scheme 4
Scheme 4. Plausible reaction pathway.

References

    1. Zhu J. and Bienaymé H., Multicomponent Reactions, Wiley-VCH, Weinheim, Germany, 2005
    1. Allais C. Grassot J.-M. Rodriguez J. Constantieux T. Chem. Rev. 2014;114:10829–10868. - PubMed
    2. Guo W. Liao J. Liu D. Li J. Ji F. Wu W. Jiang H. Angew. Chem., Int. Ed. 2017;56:1289–1293. - PubMed
    3. Echemendía R. de La Torre A. F. Monteiro J. L. Pila M. Corrêa A. G. Westermann B. Rivera D. G. Paixão M. W. Angew. Chem., Int. Ed. 2015;54:7621–7625. - PubMed
    4. Reguera L. Rivera D. G. Chem. Rev. 2019;119:9836–9860. - PubMed
    5. Wu P. Givskov M. Nielsen T. E. Chem. Rev. 2019;119:11245–11290. - PMC - PubMed
    1. Rotstein B. H. Zaretsky S. Rai V. Yudin A. K. Chem. Rev. 2014;114:8323–8359. - PubMed
    2. Cioc R. C. Ruijter E. Orru R. V. A. Green Chem. 2014;16:2958–2975.
    1. Biginelli P. Ber. Dtsch. Chem. Ges. 1891;24:1317–1319.
    1. Hantzsch A. Ber. Dtsch. Chem. Ges. 1881;14:1637–1638.

LinkOut - more resources