Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb;37(1):e14019.
doi: 10.1111/cobi.14019. Epub 2022 Nov 16.

Integrating habitat-masked range maps with quantifications of prevalence to estimate area of occupancy in IUCN assessments

Affiliations

Integrating habitat-masked range maps with quantifications of prevalence to estimate area of occupancy in IUCN assessments

Robert P Anderson. Conserv Biol. 2023 Feb.

Abstract

Estimates of species geographic ranges constitute critical input for biodiversity assessments, including those for the International Union for the Conservation of Nature (IUCN) Red List of Threatened Species. Area of occupancy (AOO) is one metric that IUCN uses to quantify a species' range, but data limitations typically lead to either under- or overestimates (and unnecessarily wide bounds of uncertainty). Fortunately, existing methods in which range maps and land-cover data are used to estimate the area currently holding habitat for a species can be extended to yield an unbiased range of plausible estimates for AOO. Doing so requires estimating the proportion of sites (currently containing habitat) that a species occupies within its range (i.e., prevalence). Multiplying a quantification of habitat area by prevalence yields an estimate of what the species inhabits (i.e., AOO). For species with intense sampling at many sites, presence-absence data sets or occupancy modeling allow calculation of prevalence. For other species, primary biodiversity data (records of a species' presence at a point in space and time) from citizen-science initiatives and research collections of natural history museums and herbaria could be used. In such cases, estimates of sample prevalence should be corrected by dividing by the species' detectability. To estimate detectability from these data sources, extensions of inventory-completeness analyses merit development. With investments to increase the quality and availability of online biodiversity data, consideration of prevalence should lead to tighter and more realistic bounds of AOO for many taxonomic groups and geographic regions. By leading to more realistic and representative characterizations of biodiversity, integrating maps of current habitat with estimates of prevalence should empower conservation practitioners and decision makers and thus guide actions and policy worldwide.

Estimaciones de las distribuciones geográficas de las especies constituyen insumos críticos para evaluaciones de la biodiversidad, incluyendo la Lista Roja de Especies Amenazadas de la Unión Internacional de la Conservación de la Naturaleza (UICN). El área de ocupación (AOO) es una métrica que usa la UICN para cuantificar la distribución de una especie aunque, típicamente, limitaciones en los datos disponibles hacen que métodos actuales produzcan subestimaciones o sobreestimaciones del área (y rangos de incertidumbre innecesariamente amplios). Afortunadamente, para producir un rango no sesgado de estimaciones plausibles para AOO se pueden desarrollar extensiones de métodos existentes en los cuales se usan mapas de distribución y datos de cobertura del suelo para estimar el área que efectivamente ofrece hábitat para una especie. Tal proceso requiere estimar la proporción de sitios que ocupa una especie dentro de su distribución (de las que actualmente proveen hábitat; i.e., prevalencia). Multiplicar una cuantificación del área con hábitat por la prevalencia resulta en un estimado del área que ocupa la especie (i.e., AOO). Para especies con muestreos intensivos en muchos sitios, la prevalencia se puede calcular utilizando conjuntos de datos de presencia/ausencia o el modelado de ocupación. Para otras especies se podrían usar datos primarios de biodiversidad (registros de la ocurrencia de una especie en un punto en el espacio y el tiempo) provenientes de iniciativas de ciencia ciudadana y colecciones de referencia de herbarios y museos de historia natural. En tales casos, estimaciones de la prevalencia de una muestra deben ser corregidas, dividiendo por la detectabilidad de la especie. Estimar la detectabilidad utilizando estas fuentes de datos amerita desarrollar extensiones de análisis de completitud de inventarios. Con esfuerzos para aumentar la calidad y disponibilidad de datos de biodiversidad en línea, el uso de prevalencia en el cálculo de AOO debe resultar en estimaciones más realistas y con rangos de incertidumbre reducidos para muchos grupos taxonómicos y regiones geográficas. Debido a que conducen hacía caracterizaciones más reales y representativas de la biodiversidad, técnicas que integran mapas de hábitat actual y estimaciones de prevalencia pueden empoderar a profesionales de la conservación y tomadores de decisiones, y así guiar acciones y políticas alrededor del mundo.

Keywords: AOO; IUCN Red List; Lista Roja UICN; amenazada; detección; detection; distribución geográfica; extinción; extinction; geographic distribution; occupied; ocupada; riesgo; risk; threatened.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Schematic hypothetical illustration of existing methods to estimate area of occupancy (AOO) for assessment for the International Union for the Conservation of Nature (IUCN) Red List of Threatened Species following the approach explained in the IUCN (2022) guidelines (black dots, sites of known presence for a species; white dots, sites where sampling was conducted but did not detect the species due to its absence or inadequate sampling; grid, 2×2 km cells of standardized resolution for calculating AOO): (a) known and other sampled sites on a habitat‐masked range map (light gray) that indicates areas currently suitable for the species, (b) occupied‐cell method in which the species’ occupancy is assigned only to sites of known presence with current habitat (often leads to underestimates of AOO), (c) methods based on expert‐drawn or model‐based habitat‐masked range map that shows all areas currently suitable for the species across its distribution (Table 2) (often lead to overestimates of AOO, e.g., here at half the sampled sites in currently suitable areas, the species was not detected).
FIGURE 2
FIGURE 2
Illustration of the prevalence‐based conversion method to estimate the area of occupancy (AOO) for assessment for the International Union for the Conservation of Nature (IUCN) Red List of Threatened Species following the approach explained in the IUCN (2022) guidelines (terms defined in Tables 1 & 2): part I, an overview of the process (dashed arrows, process repeated as necessary); part II, three options for calculating prevalence (feeds back to part I) (ovals and circles, necessary data inputs; hexagon, habitat‐masked range map [input to the process]; squares, quantitative estimates produced; option A, detectability equals 1; option B, detectability estimated in the process of calculating prevalence; option C, detectability estimated from primary biodiversity data and inventory completeness; part requires future development [red, C3]).
FIGURE 3
FIGURE 3
Hypothetical example for the forest‐restricted Ecuadorean spiny pocket mouse (Heteromys teleus) showing how the proposed prevalence‐based conversion method for calculating the area of occupancy (AOO) could improve assessment for the International Union for the Conservation of Nature (IUCN) Red List of Threatened Species following IUCN (2022) guidelines: (a) continuous suitability range, showing stark gradients within the species’ range (warmer colors indicate higher suitability) and (b) binary habitat‐masked range map (green) after considering current forest cover (Kass et al., 2021a). Both maps are at the native resolution of environmental data (not 2×2 km as used for calculating AOO). Existing methods (Table 2) yield a wide range of implausible estimates for AOO, designating the species as either endangered or only near threatened. In contrast, the prevalence‐based conversion method could yield an unbiased estimate of the area occupied. For example, a hypothetical uniform value of 0.15 (90% CI 0.10−0.20) for prevalence across all currently suitable areas in the range of H. teleus would indicate the species is threatened (vulnerable). Quantifying prevalence stratified by suitability level would aosimprove estimates of AOO (most deforestation in the range of H. teleus corresponds to areas of low modeled suitability).

References

    1. Amano, T. , Lamming, J. D. L. , & Sutherland, W. J. (2016). Spatial gaps in global biodiversity information and the role of citizen science. BioScience, 66, 393–400.
    1. Anderson, R. P. (2003). Real vs. artefactual absences in species distributions: Tests for Oryzomys albigularis (Rodentia: Muridae) in Venezuela. Journal of Biogeography, 30, 591–605.
    1. Anderson, R. P. (2012). Harnessing the world's biodiversity data: Promise and peril in ecological niche modeling of species distributions. Annals of the New York Academy of Sciences, 1260, 66–80. - PubMed
    1. Anderson, R. P. , Araújo, M. B. , Guisan, A. , Lobo, J. M. , Martínez‐Meyer, E. , Peterson, A. T. , & Soberón, J. M. (2020). Optimizing biodiversity informatics to improve information flow, data quality, and utility for science and society. Frontiers of Biogeography, 12, e47839.
    1. Anderson, R. P. , Gutiérrez, E. E. , Ochoa‐G, J. , García, F. J. , & Aguilera, M. (2012). Faunal nestedness and species–area relationship for small non‐volant mammals in “sky islands” of northern Venezuela. Studies on Neotropical Fauna and Environment, 47, 157–170.

Publication types