Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2022 Oct 3;5(10):e2238645.
doi: 10.1001/jamanetworkopen.2022.38645.

Effects of a Low-Carbohydrate Dietary Intervention on Hemoglobin A1c: A Randomized Clinical Trial

Affiliations
Randomized Controlled Trial

Effects of a Low-Carbohydrate Dietary Intervention on Hemoglobin A1c: A Randomized Clinical Trial

Kirsten S Dorans et al. JAMA Netw Open. .

Abstract

Importance: Low-carbohydrate diets decrease hemoglobin A1c (HbA1c) among patients with type 2 diabetes at least as much as low-fat diets. However, evidence on the effects of low-carbohydrate diets on HbA1c among individuals with HbA1c in the range of prediabetes to diabetes not treated by diabetes medications is limited.

Objective: To study the effect of a behavioral intervention promoting a low-carbohydrate diet compared with usual diet on 6-month changes in HbA1c among individuals with elevated untreated HbA1c.

Design, setting, and participants: This 6-month randomized clinical trial with 2 parallel groups was conducted from September 2018 to June 2021 at an academic medical center in New Orleans, Louisiana. Laboratory analysts were blinded to assignment. Participants were aged 40 to 70 years with untreated HbA1c of 6.0% to 6.9% (42-52 mmol/mol). Data analysis was performed from November 2021 to September 2022.

Interventions: Participants were randomized to a low-carbohydrate diet intervention (target <40 net grams of carbohydrates during the first 3 months; <60 net grams for months 3 to 6) or usual diet. The low-carbohydrate diet group received dietary counseling.

Main outcomes and measures: Six-month change in HbA1c was the primary outcome. Outcomes were measured at 0, 3, and 6 months.

Results: Of 2722 prescreened participants, 962 underwent screening, and 150 were enrolled (mean [SD] age, 58.9 [7.9] years; 108 women [72%]; 88 Black participants [59%]) and randomized to either the low-carbohydrate diet intervention (75 participants) or usual diet (75 participants) group. Six-month data were collected on 142 participants (95%). Mean (SD) HbA1c was 6.16% (0.30%) at baseline. Compared with the usual diet group, the low-carbohydrate diet intervention group had significantly greater 6-month reductions in HbA1c (net difference, -0.23%; 95% CI, -0.32% to -0.14%; P < .001), fasting plasma glucose (-10.3 mg/dL; 95% CI, -15.6 to -4.9 mg/dL; P < .001), and body weight (-5.9 kg; 95% CI, -7.4 to -4.4 kg; P < .001).

Conclusions and relevance: In this randomized clinical trial, a low-carbohydrate dietary intervention led to improvements in glycemia in individuals with elevated HbA1c not taking glucose-lowering medication, but the study was unable to evaluate its effects independently of weight loss. This diet, if sustained, might be a useful dietary approach for preventing and treating type 2 diabetes, but more research is needed.

Trial registration: ClinicalTrials.gov Identifier: NCT03675360.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: Dr Dorans reported receiving grants from the National Heart, Lung, and Blood Institute outside the submitted work. Dr Bazzano reported receiving grants from the National Institutes of Health during the conduct of the study. No other disclosures were reported.

Figures

Figure 1.
Figure 1.. Study Flow Diagram
eGFR indicates estimated glomerular filtration rate.
Figure 2.
Figure 2.. Mean Estimated Primary and Secondary Outcomes
aP < .05 for between-group net change from baseline.

References

    1. National Center for Health Statistics . Leading causes of death 2017. Accessed September 21, 2022. https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
    1. Sarwar N, Gao P, Seshasai SR, et al. ; Emerging Risk Factors Collaboration . Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215-2222. doi:10.1016/S0140-6736(10)60484-9 - DOI - PMC - PubMed
    1. World Health Organization; International Diabetes Foundation . Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation. World Health Organization; 2006.
    1. Gerstein HC, Santaguida P, Raina P, et al. . Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res Clin Pract. 2007;78(3):305-312. doi:10.1016/j.diabres.2007.05.004 - DOI - PubMed
    1. Knowler WC, Barrett-Connor E, Fowler SE, et al. ; Diabetes Prevention Program Research Group . Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393-403. doi:10.1056/NEJMoa012512 - DOI - PMC - PubMed

Publication types

Associated data

LinkOut - more resources